98%
921
2 minutes
20
Measuring quantitative and accurate friction force at the nanoscale by means of atomic force microscopy is not straightforward. Numerous lateral force calibration methods have been proposed in the last decades. The most popular one is the wedge method that requires a specific calibration sample having areas that present constant slope and friction coefficient. In this paper, we propose to revisit the wedge method by using an original, cheap, and easy-to-make standard, which consists of a V-shaped scratch made by a Berkovich nanoindenter tip on a fused silica substrate. We show that the scratch has two large opposite facets characterized by the same moderate and constant friction coefficient and slope. This allows simplification of the data processing and a much more reliable and accurate lateral force microscopy calibration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0239444 | DOI Listing |
J Immunother Cancer
September 2025
Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, Massachusetts, USA
Background: Tumor heterogeneity and antigen escape are mechanisms of resistance to chimeric antigen receptor (CAR)-T cell therapy, especially in solid tumors. Targeting multiple antigens with a unique CAR construct could be a strategy for a better tumor control than monospecific CAR-T cells on heterogeneous models. To overcome tumor heterogeneity, we targeted mesothelin (meso) and Mucin 16 (MUC16), two antigens commonly expressed in solid tumors, using a tandem CAR design.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic
Within the bone microenvironment, the intricate interplay and regulation among matrix components form a complex network. Disentangling this network is crucial for uncovering potential therapeutic targets in bone pathology. Osteocalcin (OCN), the most abundant non-collagenous bone protein, is an essential node within this network.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; College of Aerospace Engineering, Nanjing University of Aerona
Ion adsorption at the solid-liquid interface of two-dimensional (2D) materials is ubiquitous and plays a pivotal role in interfacial physicochemical interactions. In practical applications, 2D materials are typically supported on solid substrates. Understanding the role of the supporting substrate is therefore critical for advancing our fundamental knowledge of interfacial interactions and downstream application success.
View Article and Find Full Text PDFACS Nano
September 2025
CINBIO and Departamento de Química Orgánica. Campus Lagoas-Marcosende, Universidade de Vigo, Vigo E-36310, Spain.
Archimedean spirals are architectural motifs that are found in nature. The facial asymmetry of amphiphilic molecules or macromolecules has been a key parameter in the preparation of these well-organized two-dimensional nanostructures in the laboratory. This facial asymmetry is also present in the helical grooves of chiral helical substituted poly(phenylacetylene)s (PPAs) and poly(diphenylacetylene)s (PDPAs), making them excellent candidates for self-assembly into 2D Archimedean nanospirals or nanotoroids.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.
View Article and Find Full Text PDF