Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advancements in deep learning have enabled functional annotation of genome sequences, facilitating the discovery of new enzymes and metabolites. However, accurately predicting compound-protein interactions (CPI) from sequences remains challenging due to the complexity of these interactions and the sparsity and heterogeneity of available data, which constrain the generalization of patterns across their solution space. In this work, we introduce CPI-Pred, a versatile deep learning model designed to predict compound-protein interaction function. CPI-Pred integrates compound representations derived from a novel message-passing neural network and enzyme representations generated by state-of-the-art protein language models, leveraging innovative sequence pooling and cross-attention mechanisms. To train and evaluate CPI-Pred, we compiled the largest dataset of enzyme kinetic parameters to date, encompassing four key metrics: the Michaelis-Menten constant ( ), enzyme turnover number ( ), catalytic efficiency ( ), and inhibition constant ( ). These kinetic parameters are critical for elucidating enzyme function in metabolic contexts and understanding their regulation by compounds within biological networks. We demonstrate that CPI-Pred can predict diverse types of CPI using only the amino acid sequence of enzymes and structural representations of compounds, outperforming state-of-the-art models on unseen compounds and structurally dissimilar enzymes. Over workflow provides a valuable tool for tackling a range of metabolic engineering challenges, including the designing of novel enzyme sequences and compounds, such as enzyme inhibitors. Additionally, the datasets curated in this study offer a valuable resource for the scientific community, serving as a benchmark for machine learning models focused on enzyme activity and promiscuity prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785036PMC
http://dx.doi.org/10.1101/2025.01.16.633372DOI Listing

Publication Analysis

Top Keywords

deep learning
12
compound-protein interactions
8
kinetic parameters
8
enzyme
7
cpi-pred
5
cpi-pred deep
4
learning
4
learning framework
4
framework predicting
4
predicting functional
4

Similar Publications

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Clinical evaluation of motion robust reconstruction using deep learning in lung CT.

Phys Eng Sci Med

September 2025

Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.

In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF