98%
921
2 minutes
20
We present a genome-scale method to map the single-molecule co-occupancy of structurally distinct nucleosomes, subnucleosomes, and other protein-DNA interactions via long-read high-resolution adenine methyltransferase footprinting. Iteratively Defined Lengths of Inaccessibility (IDLI) classifies nucleosomes on the basis of shared patterns of intranucleosomal accessibility, into: i.) minimally-accessible chromatosomes; ii.) octasomes with stereotyped DNA accessibility from superhelical locations (SHLs) ±1 through ±7; iii.) highly-accessible unwrapped nucleosomes; and iv.) subnucleosomal species, such as hexasomes, tetrasomes, and other short DNA protections. Applying IDLI to mouse embryonic stem cell (mESC) chromatin, we discover widespread nucleosomal distortion on individual mammalian chromatin fibers, with >85% of nucleosomes surveyed displaying degrees of intranucleosomally accessible DNA. We observe epigenomic-domain-specific patterns of distorted nucleosome co-occupancy and positioning, including at enhancers, promoters, and mouse satellite repeat sequences. Nucleosome distortion is programmed by the presence of bound transcription factors (TFs) at cognate motifs; occupied TF binding sites are differentially decorated by distorted nucleosomes compared to unbound sites, and degradation experiments establish direct roles for TFs in structuring binding-site proximal nucleosomes. Finally, we apply IDLI in the context of primary mouse hepatocytes, observing evidence for pervasive nucleosomal distortion . Further genetic experiments reveal a role for the hepatocyte master regulator FOXA2 in directly impacting nucleosome distortion at hepatocyte-specific regulatory elements . Our work suggests extreme-but regulated-plasticity in nucleosomal DNA accessibility at the single-molecule level. Further, our study offers an essential new framework to model transcription factor binding, nucleosome remodeling, and cell-type specific gene regulation across biological contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785029 | PMC |
http://dx.doi.org/10.1101/2025.01.17.633622 | DOI Listing |
Biochemistry (Mosc)
August 2025
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
DNA damage results in distortion of the B-form structure of the DNA double helix. Recognition of such distortion by DNA repair proteins is an important stage in the process initiation. Nucleosome structure imposes restrictions on mobility and plasticity of DNA geometry.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
The essential architectural protein HMGB1 increases accessibility of nucleosomal DNA and counteracts the effects of linker histone H1. However, HMGB1 is less abundant than H1 and binds nucleosomes more weakly, raising the question of how it competes with H1. Here, we find that HMGB1 increases nucleosomal DNA accessibility without displacing H1.
View Article and Find Full Text PDFNucleic Acids Res
July 2025
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai
Among the regulatory factor X (RFX) transcription factor family, RFX5 is uniquely reported to bind nucleosomes and induce nucleosome remodeling in vivo. Dysfunctions in RFX5 have been implicated in various diseases. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the RFX5-nucleosome complex, revealing that the extended DNA binding domain (eDBD) of RFX5 binds to the nucleosome at superhelical location +2.
View Article and Find Full Text PDFNat Struct Mol Biol
August 2025
Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
The Chd1 chromatin remodeler repositions nucleosomes into evenly spaced arrays, a characteristic of most eukaryotic genes. Here we show that the yeast Chd1 remodeler requires two activating segments to distort nucleosomal DNA into an A-form-like conformation, a critical first step in nucleosome sliding. As shown by cryo-electron microscopy, these two activating segments together pack against the ATPase motor, where they are poised to stabilize the central ATPase cleft.
View Article and Find Full Text PDFScience
June 2025
MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P. R. China.
Chromatin remodelers utilize the energy of adenosine triphosphate (ATP) hydrolysis to slide nucleosomes, regulating chromatin structure and gene activity in cells. In this work, we report structures of imitation switch (ISWI) bound to the nucleosome during active ATP hydrolysis and remodeling, revealing conformational transitions of the remodeling motor across the adenosine triphosphatase (ATPase) cycle. The DNA strands were distorted accordingly, showing one full base-pair bulge and a loss of histone contact at the site of motor binding in the adenosine diphosphate* (ADP*) and apo* (unbound) states.
View Article and Find Full Text PDF