Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

3D flexible electrodes are essential to implement flexible pressure sensors in various flexible electronic applications. Conventional methods for fabricating these electrodes include electroless deposition, spray coating, and incorporating conductive nanomaterials into a polymer matrix. However, the electrodes fabricated using these methods are characterized by poor adhesion between the conductive layer and polymer surface and fail to maintain intrinsic mechanical properties of the polymer, such as elastic modulus and ductility. Herein, a transfer method in which conductive nanomaterials are embedded into the surface of polymer networks via optimal surface energy control is proposed, such as reducing adhesion between the mold and nanomaterials. This method induces mechanical interlocking between the surface of polymer networks and conductive nanomaterials, firmly anchoring them onto the polymer network surface. Moreover, the intrinsic mechanical properties of the fabricated 3D flexible electrodes remain unchanged. Flexible capacitive sensors prepared using the resulting electrodes exhibit a stable sensing performance (ΔC/C = 0.169%) even under repetitive pressure conditions (5000 cycles at 70 kPa). The proposed robust 3D flexible electrode fabrication method presents a promising strategy for the future development of flexible pressure sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202401839DOI Listing

Publication Analysis

Top Keywords

conductive nanomaterials
16
flexible electrodes
12
surface polymer
12
polymer networks
12
flexible
8
robust flexible
8
flexible pressure
8
pressure sensors
8
intrinsic mechanical
8
mechanical properties
8

Similar Publications

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF