Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Neural crest induction begins at the neural plate border and involves the intricate interplay of signaling and transcriptional events. In this review, we examine the literature on neural crest induction, focusing primarily on the chick model due to the extended time during which the induction process occurs. While it is well-established that induction initiates during mid-gastrulation, evidence from tissue recombination and transcriptomic analyses suggests that the process continues until neural tube closure. Along the body axis, distinct neural crest populations with varying developmental potentials emerge in a rostral to caudal progression. Testing axial level differences has revealed axial level specific subcircuits that influence region-specific neural crest cell fate decision, though what leads to axial level specification remains unknown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cdev.2025.204000 | DOI Listing |