A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing Cd and Pb tolerance of Robinia pseudoacacia (black locust) by regulating antioxidant defense system, macroelement uptake and microstructure. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Woody plants have received considerable attention for the phytoremediation of heavy metal-contaminated soil. This study aimed to investigate the changes in antioxidant enzyme activity, macroelement uptake and microstructure of the woody plant Robinia pseudoacacia (black locust) for the phytoremediation of cadmium (Cd) and lead (Pb) co-contaminated soil based on dynamic sampling. The results show that black locust demonstrates strong tolerance in Cd and Pb co-contaminated soil. After 30-120 days of cultivation, the activities of superoxide dismutase, peroxidase and the macroelement (potassium [K] and calcium [Ca]) content in plant leaves significantly declined in response to Cd and Pb. However, after 160 d of cultivation, the antioxidant enzyme activities, chlorophyll, sulfhydryl and soluble protein contents, as well as Ca and magnesium content in plant leaves were returned to normal levels under the 40 mg kg-1 Cd and 1000 mg kg-1 Pb contaminated soil (CdPb3). Meanwhile, K content in plant leaves under the CdPb3 treatment was significantly (P < 0.05) increased by 68.9% compared with the control. Cadmium and Pb were primarily accumulated in black locust roots. Scanning electron microscope analysis indicated that the sieve tubes in the roots and stems of plant might block the transport of Cd and Pb. Transmission electron microscope analysis indicated that the number and volume of osmiophilic particles in plant leaves were increased and the cell walls were thickened in response to Cd and Pb stress. Path analysis further indicated that the growth of plant was related to macroelements uptake and physiological change (photosynthesis, antioxidant enzyme activity and chelation). Thus, black locust could effectively regulate the antioxidant defense system, macroelement absorption and microstructure to enhance plant tolerance to Cd and Pb stress. Moreover, black locust could maintain the normal urease, acid phosphatase and sucrase activities in the Cd and Pb co-contaminated soil. These findings suggest that black locust could be considered as a useful woody plant for the phytostabilization in Cd- and Pb-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpaf015DOI Listing

Publication Analysis

Top Keywords

black locust
12
content plant
12
plant leaves
12
robinia pseudoacacia
8
pseudoacacia black
8
macroelement uptake
8
uptake microstructure
8
microstructure woody
8
antioxidant enzyme
8
co-contaminated soil
8

Similar Publications