Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Presently, humanity is confronted with a range of diseases that have high death rates, especially those linked to cancerous growths. Several enzymes and proteins have been discovered as highly attractive targets for cancer treatment. The PARP family consists of 17 members and plays a crucial role in repairing DNA damage, which enables the survival of cancer cells. PARP-1 and, to a lesser extent, PARP-2 display above 90% activity in response to DNA damage, thereby distinguishing them apart from other members of the PARP family. Elevated levels of PARP-1 were observed in many types of tumor cells, such as breast, lung, ovarian, prostate, and melanomas. In an attempt to provide a future guide for developing selective inhibitors for PARP-1 over PARP-2 to minimize the resulting side effects from PARP-2 inhibitors, we constructed a structure-based virtual screening approach (SBVS). Firstly. A 3D pharmacophore was constructed based on the interaction of the selective inhibitor compound IV. After that, a database of nearly 450,000 phthalimide-containing inhibitors was screened through the validated pharmacophore, and 165 compounds were retrieved. The retrieved compounds were docked into the active site of PARP-1 where only 5 compounds MWGS-1-5 achieved a favorable docking score than the reference IV (-16.8 Kcal/mol). Redocking of the five compounds should have excellent selectivity for PARP-1 over PARP-2, especially compound MWGS-1. Further endorsement via molecular dynamics has proven higher affinity and selectivity for MWGS-1 towards PARP-1 over PARP-2, in which PARP-1- MWGS-1 and PARP-1- MWGS-1 achieved RMSD values of 1.42 and 2.8 Å, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786381PMC
http://dx.doi.org/10.1186/s13065-025-01389-2DOI Listing

Publication Analysis

Top Keywords

parp-1 parp-2
12
structure-based virtual
8
virtual screening
8
screening approach
8
parp family
8
dna damage
8
parp-1- mwgs-1
8
parp-1
7
parp-2
5
multi-stage structure-based
4

Similar Publications

Poly(ADP-ribose) polymerases are critical enzymes contributing to regulation of numerous cellular processes, including DNA repair and chromatin remodelling. Within the PARP family, PARP1 and PARP2 primarily facilitate PARylation in the nucleus, particularly responding to genotoxic stress. The activity of PARPs is influenced by the nature of DNA damage and multiple protein partners, with HPF1 being the important one.

View Article and Find Full Text PDF

Polyadenosine diphosphate-ribose polymerase 1 (PARP-1) and 2 (PARP-2) are key DNA repair enzymes that promote single-strand break repair via the base excision pathway. Niraparib, a PARP inhibitor, has shown clinical efficacy with the reduction of disease progression or death and progression-free survival benefit across multiple clinical trials, leading to the Food and Drug Administration (FDA) approval for the treatment of advanced and recurrent ovarian cancers. This study presents a robust and simple 5-min assay designed for the quantitation of the single agent niraparib in human plasma utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

B-cell lymphomas represent a heterogeneous group of malignancies characterized by complex genetic, epigenetic, and microenvironmental alterations. Defects in the DNA damage response (DDR) are critical drivers of lymphomagenesis, generating therapeutic vulnerabilities that can be exploited by targeting key DDR regulators, such as poly (ADP-ribose) polymerase-1 (PARP-1) and PARP-2. Preclinical studies demonstrate that DDR-defective B-cell lymphomas are highly sensitive to PARP-1/PARP-2 inhibition, and early-phase clinical trials using nonselective PARP inhibitors, either as monotherapy or in combination with chemotherapy, immunotherapy, or epigenetic agents, have yielded encouraging results.

View Article and Find Full Text PDF

Engaging an engineered PARP-2 catalytic domain mutant to solve the complex structures harboring approved drugs for structure analyses.

Bioorg Chem

June 2025

Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:

The PARP-1/2 inhibitors have been approved for the treatment of cancers by modulating the enzymatic activity and/or the trapping ability for damaged DNA of PARP-1 and/or PARP-2, and the selective PARP-1 inhibitors are now attracting considerable attention with an aim to search for drug candidates with an improved safety. Exploring the structural basis of the selectivity and trapping capability of known PARP-1/2 inhibitors would be beneficial for the discovery of the improved inhibitors. Herein, a mutated PARP-2 catalytic domain, designated as catPARP-2SE, was engineered.

View Article and Find Full Text PDF

Prognostic Value of PARP1 and PARP2 Copy Number Alterations in Prostate Cancer.

Lab Invest

June 2025

Departament of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Research Institute, Barcelona, Spain. Electronic address:

PARP1/2 have overlapping yet nonredundant biological functions in DNA repair and androgen receptor-transcriptional regulation. Studies on PARP alterations in human tumors have yielded conflicting results. In prostate cancer (PCa), PARP1/2 protein overexpression has been related to androgen deprivation therapy resistance, biochemical recurrence, and progression to metastases.

View Article and Find Full Text PDF