A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Adapting hybrid density functionals with machine learning. | LitMetric

Adapting hybrid density functionals with machine learning.

Sci Adv

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exact exchange contributions significantly affect electronic states, influencing covalent bond formation and breaking. Hybrid density functional approximations, which average exact exchange admixtures empirically, have achieved success but fall short of high-level quantum chemistry accuracy due to delocalization errors. We propose adaptive hybrid functionals, generating optimal exact exchange admixture ratios on the fly using data-efficient quantum machine learning models with negligible overhead. The adaptive Perdew-Burke-Ernzerhof hybrid density functional (aPBE0) improves energetics, electron densities, and HOMO-LUMO gaps in QM9, QM7b, and GMTKN55 benchmark datasets. A model uncertainty-based constraint reduces the method smoothly to PBE0 in extrapolative regimes, ensuring general applicability with limited training. By tuning exact exchange fractions for different spin states, aPBE0 effectively addresses the spin gap problem in open-shell systems such as carbenes. We also present a revised QM9 (revQM9) dataset with more accurate quantum properties, including stronger covalent binding, larger bandgaps, more localized electron densities, and larger dipole moments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784814PMC
http://dx.doi.org/10.1126/sciadv.adt7769DOI Listing

Publication Analysis

Top Keywords

exact exchange
16
hybrid density
12
machine learning
8
density functional
8
electron densities
8
adapting hybrid
4
density functionals
4
functionals machine
4
exact
4
learning exact
4

Similar Publications