98%
921
2 minutes
20
Somatic multigene analysis by next-generation sequencing (NGS) is routinely integrated in medical oncology for clinical decision-making. However, with the fast-growing number of recommended and required genes as well as pan-cancer biomarkers, small panels have become vastly insufficient. Comprehensive genomic profiling (CGP) is, thus, required to screen for clinically relevant markers. In this multicentric study, we report on an extensive analysis across seven centers comparing the results of the novel OncoDEEP CGP assay with the diagnostically validated TruSight Oncology 500 (TSO500) kit on 250 samples. Overall concordance was 90% for clinically relevant gene variants and >96% for more complex biomarkers. Agreement for fusion detection was 94% for the 11 overlapping clinically actionable driver genes. The higher coverage uniformity of OncoDEEP compared to TSO500 allows users to pool more samples per sequencing run. Tertiary data analysis, including reporting, is integrated in the OncoDEEP solution, whereas this is an add-on for TSO500. Finally, we showed that, analytically, the OncoDEEP panel performs well, thereby advocating its use for CGP of solid tumors in diagnostic laboratories, providing an all-in-one solution for optimal patient management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12161465 | PMC |
http://dx.doi.org/10.1002/1878-0261.13812 | DOI Listing |
Lab Anim Res
September 2025
Korea Model Animal Priority Center (KMPC), Seoul, Republic of Korea.
Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFGenome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDF