Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The arrangement of pores within the framework plays a crucial role in the gas separation and adsorption of metal-organic frameworks (MOFs), determining their overall performance. In this study, the impact on gas separation efficiency is compared using two multivariate MOF (MTV-MOF) systems with controlled pore arrangements. These systems employ two types of ligands with differing bulkiness: one is the core-shell MOF composite (CSMOF), sequentially synthesized with the bulkier ligand located at the shell, and the other is the mixed-linker MOF (MLMOF), synthesized via a one-pot reaction. Interestingly, in MLMOFs, it is confirmed that the distribution of bulky ligands increases gradually from the center to the surface, rather than being randomly distributed, forming a framework with finely tuned pores. MLMOFs exhibit a high CH/CH ideal adsorption solution theory (IAST) selectivity of 2.25 due to the overall distribution of alkoxy chains that can form multiple interaction sites with CH. Breakthrough experiments demonstrate that MLMOF enables the effective separation of CH/CH mixtures, achieving the productivity of 19.7 L kg for high-purity CH (>99.9%) under dry conditions. This study indicates that pore space partitioning utilizing MTV-MOFs can be effectively applied to maximize performance in specific gas separations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202500937DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
gas separation
8
rational pore
4
pore design
4
design multivariate
4
multivariate metal-organic
4
frameworks ch/ch
4
separation
4
ch/ch separation
4
separation arrangement
4

Similar Publications

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.

View Article and Find Full Text PDF

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF

Separation of xylene isomers, serving as indispensable feedstock in the petrochemical industry, is important but significantly challenging due to their similar physicochemical properties. With readily tunable network structures and chemical functionalities, metal-organic frameworks (MOFs) are promising for separation and many other potential applications. Here, we computationally design 150 lanthanide-based MOFs with one-dimensional triangular nanopores by varying metal compositions.

View Article and Find Full Text PDF