Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enzyme catalytic activities are critical biomarkers of tissue states under physiological and pathophysiological conditions. However, the direct measurement and imaging of enzyme activity remains extremely challenging. We report the synthesis and characterization of the first stable triarylmethyl (TAM) radical substrate of alkaline phosphatase (TAM-ALPs). The enzymatic dephosphorylation of TAM-ALPs results in a drastic change in its electron paramagnetic resonance (EPR) spectrum that can be used to image enzyme activity using EPR-based technologies. TAM-ALPs and their enzyme products were fully characterized using EPR and HPLC-MS techniques. A proof of concept of imaging enzyme activity using Overhauser-enhanced magnetic resonance imaging was demonstrated This study clearly demonstrates the potential of EPR-based imaging technologies associated with TAM spin probes to map enzyme activity in future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775853PMC
http://dx.doi.org/10.1021/cbmi.4c00059DOI Listing

Publication Analysis

Top Keywords

enzyme activity
20
imaging enzyme
12
activity overhauser-enhanced
8
overhauser-enhanced magnetic
8
magnetic resonance
8
resonance imaging
8
alkaline phosphatase
8
enzyme
7
imaging
6
activity
5

Similar Publications

Multienzyme Cascade Coimmobilization on ZIF-8-Coated Magnetic Nanoparticles for Efficient d-Allulose Synthesis.

J Agric Food Chem

September 2025

The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.

This study develops a multienzyme coimmobilization strategy on NTA-functionalized ZIF-8-coated magnetic nanoparticles (NZMNPs) for efficient d-allulose synthesis. Under optimized immobilization conditions (enzyme-to-carrier ratio: 1:50 w/w, 30 min immobilization), the system achieved an immobilization efficiency of 93.7% along with 107.

View Article and Find Full Text PDF

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway-also known as the RAS/RAF/MEK/ERK pathway-is a critical signalling cascade involved in regulating cell growth, proliferation, and survival. First discovered in the early 1980s, the pathway's extracellular signal-regulated kinase (ERK) subfamily was identified in the 1990s. The ERK family includes several isoforms-ERK1, ERK2, ERK3, ERK5, and ERK6-with ERK1 (MAPK3) and ERK2 (MAPK1) being the most well-characterised and playing central roles in MAPK signalling.

View Article and Find Full Text PDF