98%
921
2 minutes
20
SoxR containing a [2Fe-2S] cluster required for its transcription activity functions as a bacterial stress-response sensor that is activated through oxidation by redox-active compounds (RACs). SoxR from (EcSoxR) is activated by nearly all RACs nonspecifically. In contrast, nonenteric SoxRs such as (PaSoxR), and (ScSoxR) activate their target genes in response to RAC including endogenously produced metabolites. To investigate the determinants of SoxR's activity, the endogenous or various synthetic RACs-mediated oxidation of the [2Fe-2S] cluster of EcSoxR, PaSoxR, and ScSoxR were measured by pulse radiolysis. Radiolytically generated hydrated electrons (e) very rapidly reduced the oxidized form of the [2Fe-2S] cluster of SoxR. In the presence of RAC, a subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Both EcSoxR and PaSoxR reacted very rapidly (2.0 × 10 to 2.0 × 10 M s) with various RACs, including viologen, phenazines, and quinones. No differences in kinetic behaviors were evident between EcSoxR and PaSoxR, whereas ScSoxR reacted with a limited range of RACs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.4c00679 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
Iron homeostasis is essential for the virulence of the opportunistic fungal pathogen . The cytosolic monothiol glutaredoxin GrxD was recently shown to play a critical role in iron metabolism via regulation of iron-sulfur (Fe-S) binding iron-responsive transcription factors and interaction with components of the cytosolic Fe-S cluster assembly pathway. Interestingly, the putative copper-binding metallothionein CmtA was also identified as a binding partner for GrxD; however, the metal-binding properties of both proteins and the nature of their interactions were unclear.
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
NEET protein is an evolutionarily conserved protein in almost all kingdoms of life. As an important member of the NEET (Asn-Glu-Glu-Thr) superfamily, MiNT (Miner2) involved in regulating iron and reactive oxygen species (ROS) homeostasis. It contains two CDGSH (consensus sequence: C-X-C-X2-(S/T)-X3-P-X-C-D-G-(S/A/T)-H) domains used for binding [2Fe2S] clusters.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Institute of Molecular Biology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria.
Accurate sensing of cellular iron levels is vital, as this metal is essential but toxic in excess. The iron-sensing transcription factor HapX is crucial for virulence of Aspergillus fumigatus, the predominant human mold pathogen. Its absence impairs growth under iron limitation and excess, but not under moderate iron availability, suggesting that HapX switches between three states to adapt to varying iron availability.
View Article and Find Full Text PDFJ Biol Chem
August 2025
Department of Biochemistry, University of California, Riverside.
We have investigated the rapid-reaction kinetics of the NAD-dependent NADPH:ferredoxin oxidoreductase II (NfnII) from Pyrococcus furiosus, permitting a comparison with recent work done with the paralog NfnI from the same organism. The half-potentials of the electron-bifurcating L-FAD are highly crossed in both NfnI, meaning the potential for the quinone/semiquinone couple is significantly lower than that for the semiquinone/hydroquinone couple so that the semiquinone oxidation state is thermodynamically unstable. The same appears to be the case with NfnII on the basis of its similar behavior in transient absorption spectroscopy experiments and the absence of any evidence for FAD• accumulation in the course of reductive titrations (which would be manifested as a transient increase in absorbance at ∼380 nm).
View Article and Find Full Text PDFNat Chem
August 2025
Department of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Zürich, Switzerland.
Among all enzymatic metallocofactors, those found in nitrogenases, the P and L or M clusters, stand out for their intricate structures. They are assembled by proteins of the Nif gene cluster from FeS rhombs-the smallest building blocks in FeS cluster chemistry-through a sequence of reactions constructing a FeS precursor. To advance our understanding of how enzymes selectively build such elaborate inorganic molecules, here we parallel the biosynthetic pathway by reporting the rational stepwise assembly of [FeS] (m = 2, 4, 6) clusters from [FeS] rhombs within an extensive cyclic synthetic network.
View Article and Find Full Text PDF