Dedenser: A Python Package for Clustering and Downsampling Chemical Libraries.

J Chem Inf Model

Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The screening of chemical libraries is an essential starting point in the drug discovery process. While some researchers desire a more thorough screening of drug targets against a narrower scope of molecules, it is not uncommon for diverse screening sets to be favored during the early stages of drug discovery. However, a cost burden is associated with the screening of molecules, with potential drawbacks if particular areas of chemical space are needlessly overrepresented. To facilitate triaged sampling of chemical libraries and other collections of molecules, we have developed Dedenser, a tool for the downsampling of chemical clusters. Dedenser functions by reducing the membership of clusters within chemical point clouds while maintaining the initial topology or distribution in chemical space. Dedenser is a Python package that utilizes Hierarchical Density-Based Spatial Clustering of Applications with Noise to first identify clusters present in 3D chemical point clouds and then downsamples by applying Poisson disk sampling to clusters based on either their volume or density in chemical space. A command line interface tool and graphic user interface are available with Dedenser, which allow for the generation of chemical point clouds, using Mordred for QSAR descriptor calculations and uniform manifold approximation and projection for 3D embedding, as well as visualization. We hope that Dedenser will serve the community by enabling quick access to reduced collections of molecules that are representative of larger sets and selecting even distributions of molecules within clusters rather than single representative molecules from clusters. All code for Dedenser is open source and available at https://github.com/MSDLLCpapers/dedenser.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c01980DOI Listing

Publication Analysis

Top Keywords

chemical libraries
12
chemical space
12
chemical point
12
point clouds
12
chemical
10
dedenser python
8
python package
8
downsampling chemical
8
drug discovery
8
collections molecules
8

Similar Publications

The Influence of Single-Stranded or Double-Stranded DNA Tags on Ligand Binding Affinity in DNA-Encoded Libraries.

Anal Chem

September 2025

Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

DNA-encoded libraries have become widely used in drug discovery, and several different setups to link chemical compounds to DNA have been employed in the field, including single-stranded and double-stranded DNA tags as well as a variety of linker chemistries. In our previous study, we observed distinct differences in binding affinities between ligands coupled either to single-stranded or double-stranded DNA; however, the molecular basis for these differences remained unclear. Here, we present a native ion mobility mass spectrometry approach that incorporates gas- and solution-phase activation techniques to systematically investigate these differences, specifically the impact of DNA tags on binding performance in protein-ligand interactions.

View Article and Find Full Text PDF

Diversity-Oriented C-H Activation Reactions of the Naphthalene Scaffold.

J Am Chem Soc

September 2025

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

Diversity-oriented synthesis (DOS) has emerged as an efficient strategy for constructing diverse compound libraries, facilitating hit or lead identification in the drug discovery process. In parallel, developing diverse transformations at different sites is an appealing strategy to expand the diversity of appendages on scaffolds. Owing to the availability of C-H bonds at multiple sites of pharmacophores, diversity-oriented C-H activation reactions are an ideal approach to realize this goal.

View Article and Find Full Text PDF

Parallel syntheses and their throughput capabilities are powerful tools for the rapid generation of molecule libraries, making them highly beneficial for accelerating hit identification in early-stage drug discovery. Utilizing chemical spaces and virtual libraries enhances time and cost efficiency, enabling the faster exploitation of chemically diverse compounds. In this study, a parallel synthesis method for rapidly generating a 5'-amino-5'-deoxy adenosine-based amide and sulfonamide library of 42 compounds is described with high yields and purity, which is economical and ecological due to the reduced requirements for extensive purification.

View Article and Find Full Text PDF

The global rise of mosquito-borne diseases and widespread resistance to existing insecticides highlight the urgent need for novel, field-relevant mosquitocides. Here, we report the development and validation of a high-throughput, in vivo screening assay capable of evaluating adult mosquito toxicity across large chemical libraries. Utilizing a 96-well plate format, this assay enables simultaneous testing of hundreds of compounds per run using both net and filter paper substrates, with direct measurement of adult mosquito knockdown and mortality via tarsal contact - an exposure route highly relevant to real-world vector control tools such as long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS).

View Article and Find Full Text PDF

Water contamination by micropollutants is a global issue, yet there is limited information from low-income regions. To address this, we evaluated surface water quality in rapidly growing Sub-Saharan area of Malawi lacking wastewater treatment. Integrated assessment of passive sample extracts representing wet and dry seasons combined effect-based approach with in vitro bioassays, target and non-target chemical analyses (NTS).

View Article and Find Full Text PDF