98%
921
2 minutes
20
SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity. This study identified six highly efficacious antiviral SARS-CoV-2 compounds (WIN-62577, KT185, bexarotene, ledipasvir, diacerein, and simepervir) using structure-based virtual screening of compound libraries against Mpro. Using SPR and ITC, the binding of selected inhibitory compounds to the target Mpro was validated. The FRET-based protease assay demonstrated that the identified molecules effectively inhibit Mpro with IC values in the range from 0.64 to 11.98 μM. Additionally, cell-based antiviral assays showed high efficacy with EC values in the range of 1.51 to 18.92 μM. The crystal structure of the Mpro-minocycline complex detailed the possible inhibition mechanism of minocycline, an FDA-approved antibiotic. Minocycline binds to an allosteric site, revealing residues critical for the loss of protease activity due to destabilization of molecular interactions at the dimeric interface, which are crucial for the proteolytic activity of Mpro. The study suggests that the binding of minocycline to the allosteric site may play a role in Mpro dimer destabilization and direct the rational design of minocycline derivatives as antiviral drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.4c00535 | DOI Listing |
Nat Commun
September 2025
CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchroton DESY, Leibniz Institute of Virology, University of Lübeck, Hamburg, Germany.
In coronavirus (CoV) infection, polyproteins (pp1a/pp1ab) are processed into non-structural proteins (nsps), which largely form the replication/transcription complex (RTC). The polyprotein processing and complex formation is critical and offers potential therapeutic targets. However, the interplay of polyprotein processing and RTC-assembly remains poorly understood.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Corporación Universitaria Rafael Núñez, Ginumed, Cartagena, Colombia;
Human proteinase 3 (hPR3) is a lysosomal enzyme of the serine protease type. In autoimmune vasculitis, autoantibodies to hPR3 appear to have a role in the inception of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), where this protein is the main autoantigen. Indeed, patients with antibodies against hPR3 have more severe symptoms, relapses, and resistance to immunosuppressive therapies, supporting an important role for this autoantigen in the pathophysiology and severity of AAV.
View Article and Find Full Text PDFAnim Sci J
September 2025
Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, Atakum, Samsun, Türkiye.
This study aimed to evaluate the effect of some environment- and animal-based factors, such as body condition score (BCS) on 15-20 days before parturition, parity, and calving season on colostrum dry matter (DM), fat, solids-nonfat (SNF), protein, and lactose contents as well as colostrum and calf's serum immunoglobulin (IgG, IgA, and IgM), IGF-1, and lactoferrin concentrations in buffaloes. Therefore, the components of colostrum (at the first milking) and calf serum samples (at 24-48 h and 28 days after birth) from 86 Anatolian buffalo cows were analyzed by an infrared milk analyzer and ELISA test. The high BCS enhanced colostrum DM, fat, and IgG content; calf serum IgG concentration at 24-48 h, and lactoferrin at 28 days compared to low BCS.
View Article and Find Full Text PDFArch Pharm (Weinheim)
September 2025
College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China.
The SARS-CoV-2 pandemic has spurred global efforts to develop therapeutic approaches. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and a key target for therapeutic development. In this study, 22 thiosemicarbazone derivatives were synthesized.
View Article and Find Full Text PDFFood Res Int
November 2025
Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.
In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.
View Article and Find Full Text PDF