98%
921
2 minutes
20
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893899 | PMC |
http://dx.doi.org/10.1038/s44319-025-00375-y | DOI Listing |
Plant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFBlood Adv
September 2025
AP-HP, Hôpital Saint Louis and University of Paris, INSERM U944 and THEMA insitute, Paris, France.
Germline DDX41 mutations (DDX41mut) are identified in approximately 5% of myeloid malignancies with excess of blasts, representing a distinct MDS/AML entity. The disease is associated with better outcomes compared to DDX41 wild-type (DDX41WT), but patients who do not undergo allogeneic hematopoietic stem cell transplantation (HSCT) may experience late relapse. Due to the recent identification of DDX41mut, data on post-HSCT outcomes remain limited.
View Article and Find Full Text PDFCardiovasc Res
September 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO, USA.
Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.
Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.
Toxicol Sci
September 2025
Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, NJ, USA.
Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany.
Microbial co-cultures provide significant advantages over commonly used axenic cultures in biotechnological processes, including increased productivity and access to novel natural products. However, differentiated quantification of the microorganisms in co-cultures remains challenging using conventional measurement techniques. To address this, a fluorescence-based approach was developed to enable the differentiated online monitoring of microbial growth in co-cultures.
View Article and Find Full Text PDF