98%
921
2 minutes
20
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear. Here, we report that CAT2 and CAT3 protein abundance was partially controlled using the 26S proteasome. To further identify candidate proteins that modulate the stability of CAT2, we performed yeast-two-hybrid screening and recovered several clones encoding a protein with RING and vWA domains, CIRP1 ( CAT2 Interacting RING Protein 1). Drought and oxidative stress downregulated CIRP1 transcripts. CIRP1 harbored E3 ubiquitination activity and accelerated the degradation of CAT2 and CAT3 by direct interaction and ubiquitination. The cirp1 mutants exhibited stronger drought and oxidative stress tolerance, which was opposite to the cat2 and cat3 mutants. Genetic analysis revealed that CIRP1 acts upstream of CAT2 and CAT3 to negatively regulate drought and oxidative stress tolerance. The increased drought and oxidative stress tolerance of the cirp1 mutants was due to enhanced catalase (CAT) activities and alleviated ROS levels. Our data revealed that the CIRP1-CAT2/CAT3 module plays a vital role in alleviating ROS levels and balancing growth and stress responses in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jipb.13845 | DOI Listing |
Physiol Plant
September 2025
Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary.
Horticultural crops are increasingly exposed to simultaneous abiotic stresses such as drought, salinity, and temperature extremes, which often exacerbate each other's effects, leading to severe yield and quality losses. Addressing these multifaceted challenges necessitates the development and application of integrated and innovative strategies. This review highlights recent advancements in methodologies to enhance the resilience of horticultural crops against combined abiotic stresses.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
CanmetMINING, Natural Resources Canada, Ottawa, ON, Canada. Electronic address:
Acid mine drainage (AMD) is a serious environmental problem at legacy and active mine sites around the world. Climate associated drought and rewetting events can increase the severity of AMD impacts through oxidation and release of stored metal(loid)s and acidity from contaminated sediments. The area surrounding Sudbury, Ontario, with its massive mining and smelting complexes, appears especially vulnerable to drought-driven effects.
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Tomato (), a widely cultivated yet perishable crop, depends heavily on adequate sunlight and water for optimal growth and productivity. However, due to unavoidable environmental and climatic changes-particularly drought-its productivity has declined in recent years. Grafting, an ancient horticultural practice, is known to enhance yield and combat abiotic stress by regulating physiological and cellular processes.
View Article and Find Full Text PDFPlant Sci
September 2025
Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China. Electronic address:
Salt stress is one of the main abiotic stresses that affects plant growth and development, as well as crop yield. A large number of studies have reported that the WRKY gene family plays significant roles in the plant responses to salt stress, but the underlying mechanisms remain largely unknown, and research on WRKY proteins in sorghum is also limited. In this study, we identified the sorghum gene SbWRKY51, which encodes a group II WRKY transcription factor.
View Article and Find Full Text PDF