Biomineralization reaction from nanosized calcium silicate: A new method for reducing dentin hypersensitivity.

J Dent Sci

Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/purpose: This study assessed the ability of experimental materials consisting of dicalcium silicate (DCS) and tricalcium silicate (TCS) with nanosized particles to form intratubular crystals under phosphate-buffered saline (PBS) and the effect on dentin permeability reduction.

Materials And Methods: By isolating the cervical part of the extracted premolars, 195 specimens were obtained. Two experimental materials (DCS/TCS and TCS) were applied to the dentin surface by brushing and stored in PBS (n = 65). Another 65 specimens were not treated. Each group was randomly divided into five subgroups based on the PBS immersion period (1, 15, 30, 60, and 90 days, n = 10). The dentin permeability was measured, and the hydraulic conductance, Lp (%), was calculated. After acid challenge with 1 M acetic acid, Lp (%) was remeasured. Data were analyzed using two-way analysis of variance and Fisher's least significant difference test (α = 0.05). Three specimens of each subgroup were longitudinally sectioned and examined using scanning electron microscopy and a field emission-electron probe micro analyzer.

Results: The Lp (%) of the experimental groups gradually decreased over time ( < 0.05). The hydroxyapatite-like crystals that grew were observed and found to have a Ca/P ratio similar to that of hydroxyapatite. The crystals remained after the acid challenge, and the Lp (%) was not significantly different from that before acid treatment.

Conclusion: Intratubular crystals formed from the experimental materials consisted of DCS and TCS and were resistant to acid. These crystals significantly reduced dentin permeability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763565PMC
http://dx.doi.org/10.1016/j.jds.2024.05.027DOI Listing

Publication Analysis

Top Keywords

experimental materials
8
dentin permeability
8
biomineralization reaction
4
reaction nanosized
4
nanosized calcium
4
calcium silicate
4
silicate method
4
method reducing
4
dentin
4
reducing dentin
4

Similar Publications

[Mechanism and features of blood vessel damage around the gunshot wound canal].

Sud Med Ekspert

January 2025

Bureau of Forensic Medical Expertise, Saint-Petersburg, Russia.

Unlabelled: Forming wound canal is one of the main signs of gunshot wound. Its features are related to the following differential diagnostic signs: presence of gunshot wound, its intravitality, prescription, direction of projectile (bullet) movement, power of used weapon, etc.

Objective: To study the mechanisms of wound canal formation in gunshot injury, the pattern of damage to the biological tissues of its walls (mainly, blood vessels), the features of hemorrhages forming around it.

View Article and Find Full Text PDF

This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.

View Article and Find Full Text PDF

Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.

Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.

View Article and Find Full Text PDF

Background: Staging laparoscopy (SL) is an essential procedure for peritoneal metastasis (PM) detection. Although surgeons are expected to differentiate between benign and malignant lesions intraoperatively, this task remains difficult and error-prone. The aim of this study was to develop a novel multimodal machine learning (MML) model to differentiate PM from benign lesions by integrating morphologic characteristics with intraoperative SL images.

View Article and Find Full Text PDF

Bonding-Guided Anisotropic Growth of Quasi-1D MXSe Thermoelectric Nanowires.

Small

September 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Quasi-1D van der Waals materials have emerged as promising candidates for flexible electronic and thermoelectric applications due to their intrinsic anisotropy, narrow band gaps, and mechanical flexibility. Herein, MXSe (M = Nb, Ta, X = Pd, Pt) nanowires are studied to understand the bonding-directed growth mechanism. Bond valence sums and binding energy analyses reveal that weak X2-Se2 interactions perpendicular to the c-axis facilitate anisotropic growth.

View Article and Find Full Text PDF