A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electrical cell-substrate impedance sensing (ECIS) as a tool to study microbial-cell interactions. | LitMetric

Electrical cell-substrate impedance sensing (ECIS) as a tool to study microbial-cell interactions.

In Vitro Model

Division of Microbial Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala-12 India.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ECIS is an impedance-based method to study the cellular responses to a stimulus. Manipulating the alternating current frequencies in ECIS helped reveal the adherent monolayer properties, including morphology, spreading, proliferation, changes in junctional proteins and barrier integrity. Our objective in the current study was to understand the progression of infection in the airway epithelial cells using ECIS. The study also aimed at understanding the feasibility of using ECIS to study drug interactions on monolayer barrier functions. A significant reduction in impedance was noted in response to infection, indicating loss of morphology and cell viability. At frequencies lower than 2000 Hz, a gradual decrease in impedance was observed during the early phase of infection, indicating a loss of junctional integrity. On the other hand, at frequencies above 16,000 Hz, a reduction in impedance was observed only during the later phases of infection. This suggested that reduced the barrier integrity of cells during the early phase to gain access into the cells. Changes in cell morphology and subsequent loss of cell viability occur during the later phases of infection. Azithromycin is known to increase the barrier integrity of the monolayer (by increasing the expression of junctional proteins). We observed that pretreatment of A549 monolayers with azithromycin inhibited the progression of infection by ATCC 27853 and delayed the infection of the epithelium by S373 clinical isolate. Our study is the report on the mechanism of bacterial infection progression using ECIS. It can be observed that an improvement in the barrier integrity reduces the susceptibility to bacterial infections. ECIS was demonstrated to be an effective tool for studying microbial-cell interactions and the role of drug molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756453PMC
http://dx.doi.org/10.1007/s44164-022-00029-6DOI Listing

Publication Analysis

Top Keywords

barrier integrity
16
microbial-cell interactions
8
junctional proteins
8
infection
8
progression infection
8
ecis study
8
reduction impedance
8
infection indicating
8
indicating loss
8
cell viability
8

Similar Publications