98%
921
2 minutes
20
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution. Using topological spin textures, we captured the emission, propagation, reflection and interference of spin waves from spin anti-vortices under radio-frequency excitations. Remarkably, we show that spin-wave generation is closely tied to the oscillatory motion of specific magnetic domain walls, providing the missing link between wave emission and wall dynamics near magnetic singularities. This work opens new possibilities in magnonics, offering a nanoscopic view of spin dynamics via transmission electron microscopy and enabling controlled excitation via radio-frequency fields for exploring non-equilibrium states in magnetic and multiferroic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-024-02085-7 | DOI Listing |
Nano Lett
September 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Active manipulation of terahertz (THz) waves is important for future optoelectronic applications, but most approaches rely on volatile or slow actuation, limiting efficiency and stability. Here, we report a nonvolatile, low-voltage tunable THz transmission device based on electrochemical modulation of a conductive polymer thin film integrated with metallic nanoresonators. A thin film of PEDOT:PSS, deposited via a single-step spin-coating process onto the nanoresonator array, enables efficient modulation of resonance-enhanced THz transmission with a gate voltage of less than 1 V.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China. Electronic address:
Spin waves, as carriers of information in magnetic materials, hold great potential for information transmission and storage. However, the spin wave signals are generally weak, limiting both detection and practical application. Herein, we report a Raman spectroscopy study of the interference-enhanced Raman scattering (IERS) on the spin wave signal in nickel oxide (NiO) nanosheets on the SiO/Al substrate.
View Article and Find Full Text PDFChem Sci
August 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology Guangzhou 510640 China
Cyclic oligomers with multiple redox centers are ideal models for intramolecular electron transfer processes, as they feature well-defined spatial geometries and degenerate energy states. The design and synthesis of such structures with strongly interacting monomers, however, remains a significant challenge. Here, we report a one-pot synthesis of an acetylene-bridged ferrocene macrocycle (9) using alkyne metathesis, with a remarkable 43% isolated yield.
View Article and Find Full Text PDFiScience
September 2025
Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden.
The ability to efficiently control topological magnetism is crucial for advancing technological applications and deepening our understanding of magnetic systems. Although emerging van der Waals (vdW) multiferroics present a promising frontier for energy-efficient spin manipulation, the control of topological magnetism remains challenging due to its scarcity in multiferroics. Here, we demonstrate that highly tunable merons and antimerons emerge in monolayer multiferroic (CCPS).
View Article and Find Full Text PDFNano Lett
August 2025
School of Physics, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
Dipolar coupling between closely spaced magnetic waveguides enables magnonic directional couplers serving as signal combiners, power splitters, demultiplexers, and more. The wavelength-dependent coupling, combined with the weak nonlinear variation of spin-wave wavelength at constant frequency, introduces power-dependent characteristics of directional couplers. This property has been utilized in magnonic logic elements and other applications.
View Article and Find Full Text PDF