98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804588 | PMC |
http://dx.doi.org/10.1073/pnas.2425203122 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.
View Article and Find Full Text PDFPLoS One
September 2025
Korea University College of Medicine, Seoul, Republic of Korea.
Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.
Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.
PLoS One
September 2025
Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye.
The increasing demand for efficient recombinant insulin production necessitates the development of scalable, high-yield, and cost-effective bioprocesses. In this study, we engineered a novel mini-proinsulin (nMPI) with enhanced expression properties by shortening the C-peptide and incorporating specific residue substitutions to eliminate the need for enzymatic cleavage. To optimize its production, we applied a hybrid approach combining microscale high-throughput cultivation using the BioLector microbioreactor and statistical modeling via response surface methodology (RSM).
View Article and Find Full Text PDFIEEE Trans Nanobioscience
September 2025
Extracellular vesicles (EVs) produced by stem cells are nanoscale carriers of bioactive compounds with regenerative and immunomodulatory capabilities similar to those of their parent cells. Their therapeutic potential outperforms traditional stem cell therapies by lowering hazards such tumorigenicity and allowing for precise delivery. To provide a high-efficiency platform for selectively isolating stem cell EVs from minimal serum quantities while overcoming the constraints of traditional approaches such as ultracentrifugation, we developed an immunoaffinity-based capture system utilizing SiO₂ wafers functionalized with gold nanoparticles (GNPs), polyethylene glycol (HS-PEG-COOH), and stem cell-specific antibodies.
View Article and Find Full Text PDFNano Lett
September 2025
State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.
View Article and Find Full Text PDF