A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Distributed Denial of Services (DDoS) attack detection in SDN using Optimizer-equipped CNN-MLP. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Software-Defined Networks (SDN) provides more control and network operation over a network infrastructure as an emerging and revolutionary paradigm in networking. Operating the many network applications and preserving the network services and functions, the SDN controller is regarded as the operating system of the SDN-based network architecture. The SDN has several security problems because of its intricate design, even with all its amazing features. Denial-of-service (DoS) attacks continuously impact users and Internet service providers (ISPs). Because of its centralized design, distributed denial of service (DDoS) attacks on SDN are frequent and may have a widespread effect on the network, particularly at the control layer. We propose to implement both MLP (Multilayer Perceptron) and CNN (Convolutional Neural Networks) based on conventional methods to detect the Denial of Services (DDoS) attack. These models have got a complex optimizer installed on them to decrease the false positive or DDoS case detection efficiency. We use the SHAP feature selection technique to improve the detection procedure. By assisting in the identification of which features are most essential to spot the incidents, the approach aids in the process of enhancing precision and flammability. Fine-tuning the hyperparameters with the help of Bayesian optimization to obtain the best model performance is another important thing that we do in our model. Two datasets, InSDN and CICDDoS-2019, are utilized to assess the effectiveness of the proposed method, 99.95% for the true positive (TP) of the CICDDoS-2019 dataset and 99.98% for the InSDN dataset, the results show that the model is highly accurate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771897PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312425PLOS

Publication Analysis

Top Keywords

distributed denial
8
denial services
8
services ddos
8
ddos attack
8
network
6
sdn
5
ddos
4
attack detection
4
detection sdn
4
sdn optimizer-equipped
4

Similar Publications