A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Using monitoring and simulation to analyze the failure characteristics of multizone landslides controlled by faults: a case study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults. Using the 298-710 m bench in the central area of the eastern slope of the Nanfen open-pit mine as a case study, the multidimensional small baseline subset (MSBAS) technique of InSAR was employed to calculate the vertical and horizontal deformation time series in the study area, enabling an analysis of the deformation characteristics of multizone bedding sliding. Subsequently, a numerical simulation was performed to replicate the three-dimensional evolution of the multizone failure. The simulation results aligned well with field surveys and InSAR monitoring data. Furthermore, the failure sequence analysis identified critical trigger zones within the region. The findings demonstrate that the proposed method effectively identifies the critical areas and movement sequence of multi-regional failures. In this paper, the faults disrupted the connectivity between slopes, acting as the initial trigger for entire landslide. The first failure occurred in a critical area, creating space for further sliding in other regions and reducing lateral constraints in neighboring areas, eventually leading to significant deformations. Therefore, by using this method to identify potential critical areas before landslides occur, targeted mitigation measures can be implemented to reduce the risk of such events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763049PMC
http://dx.doi.org/10.1038/s41598-025-87420-xDOI Listing

Publication Analysis

Top Keywords

simulation analyze
8
analyze failure
8
characteristics multizone
8
case study
8
multiple faults
8
multi-regional failures
8
insar monitoring
8
numerical simulation
8
critical areas
8
failure
6

Similar Publications