Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Polymethyl methacrylate (PMMA) is ideal for denture bases but is prone to biofilm accumulation, leading to denture stomatitis (DS), often involving . Dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are introduced into dental materials for their antimicrobial and protein-repellent properties. This study investigates the effects of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base resins on microbial adhesion and cytotoxicity.

Methods: HP and 3DP denture base specimens were prepared using varying concentrations of DMAHDM and MPC. Microbial adhesion was quantified using CFU counts of , and cytotoxicity was assessed via an MTT assay using fibroblast cells after 24 h, 3 days, and 7 days.

Results: Both DMAHDM and MPC significantly reduced the CFU counts in both HP and 3DP materials; the combination of 1.5% DMAHDM and 3% MPC exhibited the most substantial antimicrobial effects. Cytotoxicity results varied between materials and time points; however, all treated groups maintained cell viability above the 70% threshold, indicating no significant cytotoxic effects.

Conclusion: Incorporating DMAHDM and MPC into denture base resins can effectively reduce microbial adhesion while maintaining acceptable cytotoxicity levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768527PMC
http://dx.doi.org/10.3390/polym17020228DOI Listing

Publication Analysis

Top Keywords

microbial adhesion
16
denture base
16
dmahdm mpc
16
dimethylaminohexadecyl methacrylate
12
2-methacryloyloxyethyl phosphorylcholine
12
heat-polymerized 3d-printed
8
antimicrobial protein-repellent
8
methacrylate dmahdm
8
dmahdm 2-methacryloyloxyethyl
8
phosphorylcholine mpc
8

Similar Publications

Introduction: This study evaluates two innovative protective treatments for wooden cultural heritage objects vulnerable to biodeterioration. The first involves polyacrylic resin solutions embedded with silver nanoparticles (AgNPs), while the second uses the siloxane-based coupling agent 3-mercaptopropyltrimethoxysilane (3-MPTMS) to enhance AgNP adhesion to wood surfaces.

Methods: Antimicrobial, anti-biofilm, and anti-metabolic activities were assessed using both qualitative and quantitative assays against biodeteriogenic strains (, and ).

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Antibacterial hyaluronic acid hydrogel with sustained release of larazotide as effective colitis treatment.

J Control Release

September 2025

Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China. Electronic address:

Gut barrier loss exacerbated gut microbiota dysbiosis by permitting pathogenic blooms, while gut microbiota dysbiosis caused the development of gut mucosal wounds by reducing mucus and breaking down epithelial tight junction. Current therapies combating colitis often fail to address both gut barrier dysfunction and microbial imbalance. Herein, inspired by natural gut mucus, a dual-crosslinked hydrogel (HSMP-LA) composed of thiol/maleimide-modified hyaluronic acid together with co-loading of antimicrobial ε-polylysine (ε-PL) and larazotide acetate (LA) had been developed as an injectable artificial gut mucus to simultaneously restore barrier integrity and modulate gut microbiota.

View Article and Find Full Text PDF

Neuroanatomical profiling of the rainbow trout brain parenchyma and meninges reveals specialized immune niches and region-specific hubs for bacterial immune surveillance.

Dev Comp Immunol

September 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address:

Several studies have described immune responses in the teleost brain and meninges during infection, however, fundamental studies that systematically dissect how different regions of the brain maintain immune homeostasis in teleosts are missing. Here we present an in-depth investigation of the immune status of the brain parenchyma and meninges of juvenile rainbow trout (Oncorhynchus mykiss) at the steady state. We dissected four parenchymal brain regions including olfactory bulbs (OB), telencephalon (Tel), optic tectum (OT) and cerebellum (Cer) and its corresponding dorsal meninges.

View Article and Find Full Text PDF

The complex relationship between the gut microbiome and immune system development during infancy is thought to be a key factor in the rising rates of pediatric allergic diseases. Food protein-induced allergic proctocolitis (AP), the earliest identified form of non-IgE-mediated food allergy in infants, occurs at the mucosal surface where dietary proteins, intestinal microbes, and immune cells directly interact, and increases the risk for life threatening IgE-mediated food allergy, making it an important model for understanding early food allergic disease development. The question of how specific microbial compositions and functional pathways contribute to AP development and progression remains poorly understood.

View Article and Find Full Text PDF