Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown. Therefore, this study assesses the validity and agreement of these models. Fourteen post-treatment LGG patients and six healthy controls (HC) underwent DWI MRI on a 3T MRI scanner. DWI processing included diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), white matter tract integrity (WMTI), neurite orientation dispersion and density imaging (NODDI), and fixel-based analysis (FBA). Validity was assessed by delineating surgical cavity, peri-surgical cavity, and normal-appearing white matter (NAWM) in LGG patients, and white matter (WM) in HC. Spearman correlation assessed the agreement between DWI parameters. All obtained parameters differed significantly across tissue types. Remarkably, WMTI showed that intra-axonal diffusivity was high in the surgical cavity and low in NAWM and WM. Most DWI parameters correlated well with each other, except for WMTI-derived intra-axonal diffusivity. This study shows that all parameters relevant for tumour monitoring and DWI-derived parameters for axonal fibre-bundle integrity (except WMTI-IAS-D) could be used interchangeably, enhancing inter-DWI model interpretability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766432PMC
http://dx.doi.org/10.3390/jcm14020551DOI Listing

Publication Analysis

Top Keywords

white matter
12
diffusion weighted
8
weighted imaging
8
lower-grade glioma
8
lgg patients
8
surgical cavity
8
dwi parameters
8
intra-axonal diffusivity
8
dwi
6
diffusion
5

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Background And Purpose: White matter hyperintensity (WMH) impairs cognitive function but is not evident in the early stage, raising the need to explore the underlying mechanism. We aimed to investigate the potential role of network structure-function coupling (SC-FC coupling) in cognitive performance of WMH patients.

Methods: A total of 617 participants with WMH (mean age = 61 [SD = 8]; 287 females [46.

View Article and Find Full Text PDF

Purpose: Postoperative delirium (POD) remains poorly understood in terms of predictors and underlying mechanisms. This review summarized emerging evidence on the association between brain microstructural alterations and POD.

Method: This is a narrative review, describing the microstructural changes in aging brain, microstructural MRI findings, relationship among microstructural alterations, cognitive reserve and POD, and potential interventions targeting microstructure.

View Article and Find Full Text PDF

The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.

View Article and Find Full Text PDF

Mean apparent propagator MRI (MAP-MRI) quantifies subtle alterations in tissue microstructure noninvasively and provides a more nuanced and comprehensive assessment of tissue architectural and structural integrity compared with other diffusion MRI techniques. We investigate the sensitivity of MAP-MRI-derived quantitative imaging biomarkers to detect previously unseen microstructural damage in patients with mild traumatic brain injuries (mTBI), whose clinical scans otherwise appeared normal. We developed and validated an MAP-MRI data processing pipeline for analyzing diffusion-weighted images for use in healthy controls and mTBI patients whose longitudinal scans were obtained from the GE/NFL/mTBI MRI database.

View Article and Find Full Text PDF