Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Metastasis is a leading cause of cancer-related death in castration-resistant prostate cancer (CRPC) patients. Circular RNAs (circRNAs) have emerged as key regulators of the metastasis of various cancers. However, the functional effects and regulatory mechanisms of circRNAs in metastatic CRPC (mCRPC) remain largely unknown.

Methods: The expression of circBNC2 in prostate cancer (PCa), CRPC and neuroendocrine prostate cancer (NEPC) tissues was analyzed through bioinformatics analysis. Functional assays, including cell proliferation, migration, invasion and ferroptosis, were conducted in vitro and in vivo. The interactions between circBNC2, miR-4298, and ACSL6 were explored via luciferase reporter assays, RNA immunoprecipitation, and western blotting analysis. In addition, for the first time in PCa, we developed novel nanobowls (NBs) loaded with docetaxel (DTX) and circBNC2 (Dc-NBs) and evaluated the antitumor efficacy of Dc-NBs in a photothermal therapy (PTT) strategy.

Results: We identified a novel tumor-suppressive circRNA, circBNC2, in human PCa, CRPC and NEPC samples via bioinformatic analysis. CircBNC2 expression was significantly downregulated in PCa tissues and PCa cell lines. Functional assays demonstrated that circBNC2 inhibited PCa cell proliferation and migration both in vitro and in vivo. Mechanistically, circBNC2 acted as a sponge for miR-4298, and ACSL6 was identified as a direct target of the circBNC2/miR-4298 axis. Moreover, we demonstrated that ACSL6 is essential for mediating circBNC2-regulated ferroptosis in PCa cells. More importantly, we demonstrated the nanodelivery of Dc-NBs, which exhibited significant antitumor effects in both subcutaneous and metastatic PCa models.

Conclusion: This study revealed the tumor-suppressive role of circBNC2 in mCRPC by driving ferroptosis via the circBNC2/miR-4298/ACSL6 axis. Additionally, we developed an efficient and safe PTT strategy based on a nanodelivery system that codelivers circBNC2 and DTX, highlighting its potential as a novel therapeutic approach for mCRPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759416PMC
http://dx.doi.org/10.1186/s12943-025-02234-9DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
circbnc2
10
pca
8
pca crpc
8
functional assays
8
cell proliferation
8
proliferation migration
8
vitro vivo
8
mir-4298 acsl6
8
pca cell
8

Similar Publications

Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.

View Article and Find Full Text PDF

Aims: We aimed to analyze CD63, a cell surface protein that has been associated with tumor aggressiveness in several cancers, including breast, colorectal, and lung cancer, as well as melanoma, in prostate cancer.

Methods: CD63 expression was analyzed immunohistochemically in a cohort of primary prostate cancers from 281 patients. The results were correlated with clinico-pathologic parameters, including biochemical recurrence.

View Article and Find Full Text PDF

Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.

Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.

View Article and Find Full Text PDF

Lipidomic Profiling in Cancer: Phospholipid Alterations and their Role in Tumor Progression.

Curr Cancer Drug Targets

September 2025

Department of Biotechnology, Institute of Applied Sciences &Humanities, GLA University, 17km Stone, NH-19, Mathura, Delhi Road, P.O. Chaumuhan, Mathura, 281 406, U.P. India.

Phospholipids play a crucial role in various aspects of cancer biology, including tumor progression, metastasis, and cell survival. Recent studies have highlighted the signifi-cance of phospholipid metabolism and signaling in multiple cancer types, such as breast, cer-vical, prostate, bladder, colorectal, liver, lung, melanoma, mesothelioma, and oral cancer. Al-terations in phospholipid profiles, particularly in phosphatidylcholine and phosphatidylethan-olamine, have been identified as potential biomarkers for cancer diagnosis and prognosis.

View Article and Find Full Text PDF

Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.

View Article and Find Full Text PDF