98%
921
2 minutes
20
Obsessive-compulsive disorder (OCD) is a highly heterogeneous disorder, with notable variations among cases in structural brain abnormalities. To address this heterogeneity, our study aimed to delineate OCD subtypes based on individualized gray matter morphological differences. We recruited 100 untreated, first-episode OCD patients and 106 healthy controls for structural imaging scans. Utilizing normative models of gray matter volume, we identified subtypes based on individual morphological abnormalities. Sensitivity analyses were conducted to validate the reproducibility of clustering outcomes. To gain deeper insights into the connectomic and molecular underpinnings of structural brain abnormalities in the identified subtypes, we investigated their associations with normal brain network architecture and the distribution of neurotransmitter receptors/transporters. Our findings revealed two distinct OCD subtypes exhibiting divergent patterns of structural brain abnormalities. Sensitivity analysis results confirmed the robustness of the identified subtypes. Subtype 1 displayed significantly increased gray matter volume in regions including the frontal gyrus, precuneus, insula, hippocampus, parahippocampal gyrus, amygdala, and temporal gyrus, while subtype 2 exhibited decreased gray matter volume in the frontal gyrus, precuneus, insula, superior parietal gyrus, temporal gyrus, and fusiform gyrus. When considering all patients collectively, structural brain abnormalities nullified. The identified subtypes were characterized by divergent disease epicenters. Specifically, subtype 1 showed disease epicenters in the middle frontal gyrus, while subtype 2 displayed disease epicenters in the striatum, thalamus and hippocampus. Furthermore, structural brain abnormalities in these subtypes displayed distinct associations with neurotransmitter receptors/transporters. The identified subtypes offer novel insights into nosology and the heterogeneous nature of OCD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760359 | PMC |
http://dx.doi.org/10.1038/s41398-025-03226-5 | DOI Listing |
Neurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
iInstitut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
Cerebral Amyloid Angiopathy, a common age-related small vessel disease leading to hemorrhagic stroke, shares many characteristics with Alzheimer's disease: toxic amyloid deposits, microvascular alterations and enlarged perivascular spaces (EPVS). Together, PVS enlargement, reduced amyloid-β clearance and further accumulation form a vicious cycle underlying disease progression. Yet, the neuropathological correlates of EPVS, including the associated angioarchitecture, are poorly understood.
View Article and Find Full Text PDFFront Neurol
August 2025
Department of Neuroradiology, Hôpital Maison-Blanche, Université Reims-Champagne-Ardenne, Reims, France.
Objective: This study evaluates age- and sex-related differences in brain volume, including normalized gray matter (nGM), normalized white matter (nWM), cerebrospinal fluid (CSF) volume, and total intracranial volume (TIV) in cognitively normal adults using automatic volume segmentation on 3.0 Tesla MRI.
Methods: A prospective cross-sectional study conducted from October 2021 to September 2022 included 110 cognitively normal participants.
CNS Neurosci Ther
September 2025
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Background: The high heterogeneity in vestibular migraine (VM) complicates understanding its precise pathophysiological mechanisms and identifying potential biomarkers. This study investigated the heterogeneity in VM using a newly proposed method called Individualized Differential Structural Covariance Network (IDSCN) analysis.
Methods: Structural T1-weighted MRI scans were performed on 55 patients with VM and 65 healthy controls, and an IDSCN was constructed for each patient.
Brain Imaging Behav
September 2025
Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, South 4th Ring West Road 119, Fengtai District, Beijing, 100070, China.
To explore the effect of brain cognitive compensation on the pathogenesis of postoperative delirium (POD) in the frontal glioma patients. Eighty-four adult patients with unilateral frontal glioma who underwent elective craniotomy and 37 healthy controls were recruited. Primary outcomes were POD during postoperative 1-7 days, as assessed by Confusion Assessment Method.
View Article and Find Full Text PDF