98%
921
2 minutes
20
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation. Ribosomal protein bS1, which binds to the 30S ribosomal subunit, is thought to promote translation initiation by shuttling the mRNA to the ribosome. Thus, a better understanding of how the SD and bS1 contribute to start codon selection could help efforts to improve the orthogonality of ribosomes. Here, we engineered the ribosome to prevent binding of bS1 to the 30S subunit and separate the activity of bS1 binding to the ribosome from the role of the mRNA SD sequence in start codon selection. We find that ribosomes lacking bS1 are slightly less active than wild-type ribosomes in vitro. Furthermore, orthogonal 30S subunits lacking bS1 do not have an improved orthogonality. Our findings suggest that mRNA features outside the SD sequence and independent of binding of bS1 to the ribosome likely contribute to start codon selection and the lack of orthogonality of present orthogonal ribosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800381 | PMC |
http://dx.doi.org/10.1021/acs.biochem.4c00688 | DOI Listing |
J Bacteriol
September 2025
Wadsworth Center, New York State Department of Health, Albany, New York, USA.
Prokaryotic genomes are gene-dense, so genes in the same orientation are often separated by short intergenic sequences or even overlap. Many mechanisms of regulation depend on open reading frames (ORFs) being spatially close to one another. Here, we describe one such mechanism, translational coupling, where translation of one gene promotes translation of a co-oriented neighboring gene.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Life Sciences, College of Tea Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China.
Oliv., a Tertiary period relict tree species endemic to China, is a rubber-producing plant valued for both medicinal and edible applications. rubber is a high-quality natural rubber prized for its excellent elasticity, abrasion resistance, and insulation properties, leading to broad industrial applications.
View Article and Find Full Text PDFBreed Sci
April 2025
Department of Plant Production, Faculty of Bioresources, Akita Prefectural University, Kaidoubata-Nishi 241-438, Shimoshinjyo-Nakano, Akita 010-0195, Japan.
"Tanpo", a Japanese rice landrace widely cultivated approximately 120 years ago in Akita Prefecture, exhibits a shorter, wider, thicker, and heavier grain compared to Akitakomachi. Microscopic analysis has revealed that the epidermal cells of Tanpo spikelet hulls are narrower and shorter, with an increased number of cells in the grain width direction, thus resulting in a distinctive grain shape. In a genetic analysis of an F population derived from a cross between Tanpo and Akitakomachi, the Tanpo allele was found to determine the grain shape in a recessive manner.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America.
The Transient Receptor Potential Vanilloid sub-type 1 (TRPV1) is an ion channel that is activated by heat, extracellular protons, oxidation, and it is implicated in various aspects of inflammatory pain. In this study, we uncover that residue M308 in the TRPV1 ankyrin repeat domain (ARD) stands out from most other buried ARD residues because of the greater number of human missense variants at this position while maintaining a high degree of conservation across species and TRPV channel subtypes. We use mutagenesis and electrophysiology to examine this apparent discrepancy and show that substitutions at position M308 that preserve or reduce side-chain volume have no effect on channel function, whereas substitutions with larger or more polar residues increase channel activity in response to capsaicin or temperature.
View Article and Find Full Text PDFJ Cell Sci
August 2025
Departamento de Genetica Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, CDMX, 04510, Mexico.
Mitochondrial translation is a crucial regulatory step in mitochondrial genome expression. In Saccharomyces cerevisiae, translational activators are believed to bind to the 5' UTRs of their target mRNAs to position the mitochondrial ribosome at the start codon. Pet309 and Mss51 are translational activators of COX1 mRNA, which encodes subunit one of cytochrome c oxidase.
View Article and Find Full Text PDF