Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Organic mixed ionic-electronic conductors (OMIECs) are crucial in defining the operational modes and performance of organic electrochemical transistors (OECTs). However, studies on the design and structure-performance correlations of small-molecule n-type OMIECs remain scarce. Herein, we designed and synthesized a series of naphthalene diimide (NDI)-based n-type small molecules by extending π-conjugation and increasing the number of electron-withdrawing groups, achieving performance optimization and even changes in operational modes through structural regulations. OECTs based on exhibit a low threshold voltage of -0.022 V, which is the lowest reported for n-type channel materials to date. , synthesized through π-expansion of , maintains a low threshold voltage of -0.041 V and achieves 2 orders of magnitude improvement in electron mobility (1.04 × 10 cm V s) owing to its mixed edge-on and face-on orientation. Specifically, by further increasing the number of electron-withdrawing groups, attains a sufficiently low LUMO energy level (-4.51 eV), enabling a spontaneous reduction in 0.1 M NaCl solution without external bias, thereby achieving self-doping. Consequently, it exhibits n-depletion-mode characteristics with a transconductance value of 287 μS. Moreover, devices made with show exceptional stability, retaining 98% of the initial drain current after 150 min operation. These results provide insights into the understanding and design of n-type mixed ionic-electronic conductor materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c18514 | DOI Listing |