98%
921
2 minutes
20
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that pose a growing threat to environmental and human health. Soil acts as a long-term reservoir for PFAS, potentially impacting soil biodiversity and ecosystem function. Earthworms, as keystone species in soil ecosystems, are particularly vulnerable to PFAS exposure. In this study, we investigated the sublethal effects of three short-chain (C4-C6) next-generation perfluoropropylene oxide acids (PFPOAs) on the earthworm , using a legacy perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), as a reference. We assessed a suite of biochemical endpoints, including markers for oxidative stress (catalase and superoxide dismutase activity), immunity (phenol oxidase activity), neurotoxicity (acetylcholinesterase activity), and behavioural endpoints (escape test). Results indicate that all tested PFAS, even at sub-micromolar concentrations, elicited significant effects across multiple physiological domains. Interestingly, HFPO-DA demonstrated the most substantial impact across all endpoints tested, indicating broad and significant biochemical and neurotoxic effects. Our findings underscore the potential risks of both legacy and emerging PFAS to soil ecosystems, emphasising the need for further research to understand the long-term consequences of PFAS contamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755600 | PMC |
http://dx.doi.org/10.3390/jox15010002 | DOI Listing |
J Xenobiot
December 2024
Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Viale Michel 11, 15121 Alessandria, Italy.
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that pose a growing threat to environmental and human health. Soil acts as a long-term reservoir for PFAS, potentially impacting soil biodiversity and ecosystem function. Earthworms, as keystone species in soil ecosystems, are particularly vulnerable to PFAS exposure.
View Article and Find Full Text PDFACS Omega
November 2016
Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States.
The aqueous self-assembly of μ-A(BC) brush terpolymers has been studied using dynamic light scattering and cryogenic transmission electron microscopy. In this system, the A block is hydrophilic poly(ethylene oxide), "O", the B block is hydrophobic poly(methylcaprolactone), "C", and the C block is hydrophobic and oleophobic poly(perfluoropropylene oxide), "F". Two terpolymers were examined: one with an average of about two C blocks and two F blocks and another with an average of about three C blocks and two F blocks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2014
Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6.
Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer.
View Article and Find Full Text PDFLangmuir
October 2013
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
Dissipative particle dynamics (DPD) simulation was used to study the self-assembly of laterally nanostructured vesicles in aqueous solution from μ-[poly(ethylethylene)]-[poly(ethylene oxide)][poly(perfluoropropylene oxide)] (μ-EOF) star terpolymers. The simulated results show that the laterally nanostructured vesicle forms when the length of the hydrophilic O blocks are relatively short. In the lateral nanostructure, the hexagonally packed domains formed by the hydrophobic F blocks are immersed in a two-dimensional hydrophobic E block matrix.
View Article and Find Full Text PDFLangmuir
October 2008
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDF