Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that pose a growing threat to environmental and human health. Soil acts as a long-term reservoir for PFAS, potentially impacting soil biodiversity and ecosystem function. Earthworms, as keystone species in soil ecosystems, are particularly vulnerable to PFAS exposure. In this study, we investigated the sublethal effects of three short-chain (C4-C6) next-generation perfluoropropylene oxide acids (PFPOAs) on the earthworm , using a legacy perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), as a reference. We assessed a suite of biochemical endpoints, including markers for oxidative stress (catalase and superoxide dismutase activity), immunity (phenol oxidase activity), neurotoxicity (acetylcholinesterase activity), and behavioural endpoints (escape test). Results indicate that all tested PFAS, even at sub-micromolar concentrations, elicited significant effects across multiple physiological domains. Interestingly, HFPO-DA demonstrated the most substantial impact across all endpoints tested, indicating broad and significant biochemical and neurotoxic effects. Our findings underscore the potential risks of both legacy and emerging PFAS to soil ecosystems, emphasising the need for further research to understand the long-term consequences of PFAS contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755600PMC
http://dx.doi.org/10.3390/jox15010002DOI Listing

Publication Analysis

Top Keywords

perfluoropropylene oxide
8
oxide acids
8
soil ecosystems
8
pfas
6
impact short-chain
4
short-chain perfluoropropylene
4
acids biochemical
4
biochemical behavioural
4
behavioural parameters
4
parameters savigny
4

Similar Publications

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that pose a growing threat to environmental and human health. Soil acts as a long-term reservoir for PFAS, potentially impacting soil biodiversity and ecosystem function. Earthworms, as keystone species in soil ecosystems, are particularly vulnerable to PFAS exposure.

View Article and Find Full Text PDF

Multicompartment Micelles by Aqueous Self-Assembly of μ-A(BC) brush Terpolymers.

ACS Omega

November 2016

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States.

The aqueous self-assembly of μ-A(BC) brush terpolymers has been studied using dynamic light scattering and cryogenic transmission electron microscopy. In this system, the A block is hydrophilic poly(ethylene oxide), "O", the B block is hydrophobic poly(methylcaprolactone), "C", and the C block is hydrophobic and oleophobic poly(perfluoropropylene oxide), "F". Two terpolymers were examined: one with an average of about two C blocks and two F blocks and another with an average of about three C blocks and two F blocks.

View Article and Find Full Text PDF

Clear antismudge unimolecular coatings of diblock copolymers on glass plates.

ACS Appl Mater Interfaces

December 2014

Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6.

Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer.

View Article and Find Full Text PDF

Dissipative particle dynamics (DPD) simulation was used to study the self-assembly of laterally nanostructured vesicles in aqueous solution from μ-[poly(ethylethylene)]-[poly(ethylene oxide)][poly(perfluoropropylene oxide)] (μ-EOF) star terpolymers. The simulated results show that the laterally nanostructured vesicle forms when the length of the hydrophilic O blocks are relatively short. In the lateral nanostructure, the hexagonally packed domains formed by the hydrophobic F blocks are immersed in a two-dimensional hydrophobic E block matrix.

View Article and Find Full Text PDF

Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF