A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Micro-Electro Nanofibrous Dressings Based on PVDF-AgNPs as Wound Healing Materials to Promote Healing in Active Areas. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.

Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs). The optimized PVDF-AgNPs Nanofiber dressings exhibited strong piezoelectric effects suitable for joint wounds.

Results: In vitro experiments demonstrated that the dressing effectively promoted fibroblast migration and collagen synthesis. In vivo, the dressing exhibited a trend of rapid healing in infected wounds within 12 days while modulating macrophage differentiation toward the anti-inflammatory M2 phenotype. Additionally, the incorporation of antimicrobial nanosilver effectively controlled local infections, further facilitating the healing process.

Conclusion: To sum up, by harnessing the piezoelectric effect to stimulate endogenous healing mechanisms without restricting joint mobility, the developed PVDF-AgNPs Nanofiber dressings represent a transformative approach for the treatment of wounds in highly mobile body areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752925PMC
http://dx.doi.org/10.2147/IJN.S506489DOI Listing

Publication Analysis

Top Keywords

wound healing
8
healing mechanisms
8
micro-electro-nanofiber dressing
8
polyvinylidene fluoride
8
fluoride pvdf
8
silver nanoparticles
8
nanoparticles agnps
8
pvdf-agnps nanofiber
8
nanofiber dressings
8
healing
7

Similar Publications