Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice. In addition, complement pathway genes, including , , , , and , were consistently upregulated in aged mice regardless of ZT. Furthermore, genes such as , , , , , , and exhibited ZT-dependent rhythmicity in young mice, but their rhythmic patterns were altered with age. This study provides an important dataset of the interplay between aging, diurnal rhythms, and gene expression in the corpus callosum, highlighting potential molecular mechanisms mediating white matter aging. Further investigation is warranted to dissect these gene's specific roles in neurological health during aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750567PMC
http://dx.doi.org/10.1016/j.isci.2024.111556DOI Listing

Publication Analysis

Top Keywords

corpus callosum
16
aging diurnal
8
white matter
8
gene expression
8
young mice
8
aged mice
8
mice
5
effects aging
4
diurnal transcriptome
4
transcriptome change
4

Similar Publications

Unveiling the Riddoch phenomenon: a regression analysis of stroke-induced homonymous hemianopia.

Front Neurol

August 2025

Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Introduction: A subset of patients with homonymous hemianopia can consciously perceive motion within their blind visual fields-a phenomenon known as the Riddoch phenomenon. However, the factors predicting this residual motion perception remain poorly understood. This study aims to identify clinical and neuroanatomical predictors of the Riddoch phenomenon in stroke patients.

View Article and Find Full Text PDF

Background: Functional and structural studies of the brain highlight the importance of white matter alterations in schizophrenia. However, molecular studies of the alterations associated with the disease remain insufficient.

Aim: To study the lipidome and transcriptome composition of the corpus callosum in schizophrenia, including analyzing a larger number of biochemical lipid compounds and their spatial distribution in brain sections, and corpus callosum transcriptome data.

View Article and Find Full Text PDF

Background And Purpose: Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the longitudinal impact of LLLT on brain metabolites has not been studied. The purpose of this study was to use magnetic resonance spectroscopic imaging (MRSI) to assess the metabolic response of LLLT in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.

View Article and Find Full Text PDF

Progressive lifespan modifications in the corpus callosum following a single concussion in juvenile male mice monitored by diffusion MRI.

Exp Neurol

September 2025

CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.

Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.

View Article and Find Full Text PDF