A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Preventing inappropriate signals pre- and post-ligand perception by a toggle switch mechanism of ERECTA. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on the Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: Its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development. ER_CT is required for the binding of a receptor kinase inhibitor, BKI1, and two U-box E3 ligases, PUB30 and PUB31, that trigger activated ER to degradation through ubiquitination. We further identify ER_CT as a phosphodomain transphosphorylated by the coreceptor BAK1. The phosphorylation impacts the tail structure, likely releasing ER from autoinhibition. The phosphonull version enhances BKI1 association, whereas the phosphomimetic version promotes PUB30/31 association. Thus, ER_CT acts as an off-on-off toggle switch, facilitating the release of BKI1 inhibition, enabling signal activation, and swiftly turning over the receptors afterward. Our results elucidate a mechanism that fine-tunes receptor signaling via a phosphoswitch module, maintaining the receptor at a low basal state while ensuring robust yet transient activation upon ligand perception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789017PMC
http://dx.doi.org/10.1073/pnas.2420196122DOI Listing

Publication Analysis

Top Keywords

preventing inappropriate
8
toggle switch
8
receptor kinase
8
receptor
5
inappropriate signals
4
signals pre-
4
pre- post-ligand
4
post-ligand perception
4
perception toggle
4
switch mechanism
4

Similar Publications