Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a novel, highly customizable glutathione-responsive nanogel (NG) platform for efficient mRNA delivery with precise mRNA payload release control. Optimization of various cationic monomers, including newly synthesized cationic polyarginine, polyhistidine, and acrylated guanidine monomers, allowed fine-tuning of NG properties for mRNA binding. By incorporating a poly(ethylene) glycol-based disulphide crosslinker, we achieved glutathione-triggered mRNA release, enabling targeted intracellular delivery. Our NGs demonstrated superior encapsulation (up to 89.3 %) and loading (10.7 %) efficiencies, with controlled mRNA release kinetics at intracellular glutathione concentrations. NGs outperformed commercial transfection reagents across multiple cell lines, including traditionally difficult-to-transfect lines. We demonstrate the platform's versatility by successfully delivering GFP mRNA, Mango II RNA aptamers, and functionally relevant β2-AMPK mRNA. Furthermore, we used TIRF microscopy to measure exact RNA copy number within the NGs. Notably, mechanistic cellular uptake studies revealed that disulphide-containing NGs exhibit enhanced cellular uptake and endosomal escape, potentially due to interactions with cell surface thiols. This work represents a highly tuneable, efficient, and biocompatible platform for mRNA delivery with relevance for gene therapy and vaccine development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745970PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101425DOI Listing

Publication Analysis

Top Keywords

mrna
9
uptake endosomal
8
mrna delivery
8
mrna release
8
cellular uptake
8
precise intracellular
4
intracellular uptake
4
release
4
endosomal release
4
release diverse
4

Similar Publications

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.

View Article and Find Full Text PDF

Problem: Endometriosis is a chronic inflammatory disease that leads to pelvic pain and infertility. Recent studies have indicated that immunological, endocrine, biochemical, and genetic irregularities, along with suboptimal quality of oocytes, embryos, and the endometrial environment, significantly impact infertility associated with endometriosis. Ectopic endometrial cells in endometriosis have the capacity to avoid apoptosis.

View Article and Find Full Text PDF

A considerable number of individuals are diagnosed with idiopathic trigeminal neuralgia. In order to achieve a more complete understanding of the pathophysiology, it is essential to adopt a range of novel approaches and utilize new animal models. This study investigated changes in the messenger RNA (mRNA) expression of ion-channels in a newly developed animal model of trigeminal neuropathic pain induced by cervical spinal dorsal horn compression.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF