Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rifampicin-resistant tuberculosis (RR-TB) is a critical issue with significant implications for patient care, public health, and TB control efforts that necessitate comprehensive strategies for detection. This study presents a novel point-of-care diagnostic tool for RR-TB detection employing a peptide nucleic acid (PNA)-paper-based sensor combined with isothermal recombinase polymerase amplification (RPA). The sensor targets mutations in codons 516, 526, and 531 of the rpoB gene, the top three common mutations associated with rifampicin-resistant strains. PNA probes specifically recognised wild-type sequences, generating a visual signal through a reverse hybridisation assay. The absence of a signal was observed when the mutant strains were detected because of the inability to bind the mutant sequence. Our proof-of-concept assay displayed high accuracy (100% for detecting mutations at codons 516, 526, and 531), a short turnaround time (110 min), no cross-reactivity with other bacterial pathogens, and ultrasensitivity. This PNA-paper-based sensor model can be a valuable diagnostic tool for RR-TB detection, providing an accessible diagnostic platform that can be advantageous in resource-limited settings where sophisticated laboratory infrastructure may be lacking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751166PMC
http://dx.doi.org/10.1038/s41598-025-86691-8DOI Listing

Publication Analysis

Top Keywords

peptide nucleic
8
recombinase polymerase
8
polymerase amplification
8
rifampicin-resistant tuberculosis
8
diagnostic tool
8
tool rr-tb
8
rr-tb detection
8
pna-paper-based sensor
8
mutations codons
8
codons 516
8

Similar Publications

Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.

View Article and Find Full Text PDF

We combined circular dichroism (CD) and viscosity measurements with molecular dynamics (MD) simulations and classification and regression approaches to machine learning to characterize solution structures of 22-mer, 25-mer, and 30-mer peptide- (-GlyArg6) conjugated phosphorodiamidate morpholino oligonucleotides (PPMOs). PPMO molecules form non-canonical folded structures with 1.4- to 1.

View Article and Find Full Text PDF

Mismatch-sensitive DNA hybridization controlled by inchworm-type peptide nucleic acid-PEG conjugates.

Anal Biochem

September 2025

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori, 680-8552, Japan.

The duplex-forming behavior of an inchworm-type PNA-PEG conjugate (i-PPc), engineered for the selective recognition of point mutations in DNA, was assessed through thermodynamic analysis employing UV melting curves and circular dichroism spectroscopy. The i-PPc demonstrated the ability to form stable duplexes exclusively with fully complementary DNA sequences, while no hybridization with single-base mismatched sequences. This binary on/off hybridization behavior was maintained even under physiologically relevant conditions (37 °C), thereby illustrating the exceptional point mutation discrimination capability of i-PPc.

View Article and Find Full Text PDF

Chitosan polyplexes for targeted gene delivery: From mechanisms to clinical applications.

Carbohydr Polym

November 2025

Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Vadodara, 391760, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Faculty of Pharmacy, Silpakorn Univers

As a diverse natural polymer called Chitosan, it created ground-breaking advancements in nucleic acid therapeutic delivery techniques for handling essential DNA and RNA delivery hurdles. The article investigates how nucleic acids form stable polyplexes with chitosan through electrostatic bonds, as well as explores their chemical and biological properties. The review explores how molecular weight, combined with the degree of deacetylation, combined with advanced functionalization strategies, help enhance delivery results.

View Article and Find Full Text PDF

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII)-Targeted Drug Discovery: Challenges and Strategies.

Ageing Res Rev

September 2025

Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Laboratory of Naturel Medicine for drug discovery, School of Pharmacy, China Medical University, Shenyang, 110122, China. Electronic address:

Calcium (Ca)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is an emerging drug target for age-related diseases. It is a multifunctional kinase with complex activation modes, numerous isoforms, broad tissue distribution, and a dual role in health and disease. In particular, its isoforms share a high degree of conservation within the catalytic and regulatory domains, with only minor differences confined to the linker region.

View Article and Find Full Text PDF