Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Temporal lobe epilepsy is often accompanied by comorbid symptoms such as anxiety, depression, and cognitive dysfunction. Research indicates a close relationship between blood-brain barrier (BBB) impairment and these symptoms. DL-3n-butylphthalide (NBP) has been reported to protect the BBB, but the molecular mechanisms by which NBP protects the BBB in epilepsy models remain unclear. This study investigated the protective effects of NBP on the BBB in epileptic mice to alleviate the comorbid symptoms associated with epilepsy.

Methods: We utilized Mendelian randomization to explore the association between VEGFA and epilepsy. In the animal experiments, adult male C57BL/6 mice were used to establish a KA-induced epilepsy model, receiving daily intraperitoneal injections of NBP for 30 days. After this period, behavioral experiments and Western blot analyses were conducted to assess whether the comorbid symptoms of epilepsy and BBB disruption were alleviated. Subsequently, RNA sequencing was performed to analyze potential signaling pathways involved in the pharmacological effects of NBP.

Results: Elevated circulating levels of VEGFA may be a risk factor for the onset of epilepsy. Animal experiments demonstrated that NBP treatment improved BBB disruption in KA-induced epileptic mice and alleviated depressive and anxious behaviors, as well as cognitive impairments. RNA sequencing results suggest that the pharmacological effects of NBP may be mediated through the inhibition of complement and coagulation cascades.

Conclusion: NBP can protect the integrity of the BBB in KA-induced epileptic mice, inhibiting depression, anxiety behaviors, and cognitive dysfunction. This pharmacological effect may be associated with pathways involving complement and coagulation cascades.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2024.110251DOI Listing

Publication Analysis

Top Keywords

epileptic mice
16
comorbid symptoms
12
blood-brain barrier
8
cognitive dysfunction
8
effects nbp
8
epilepsy animal
8
animal experiments
8
bbb disruption
8
rna sequencing
8
pharmacological effects
8

Similar Publications

Dravet syndrome (DS) is an early-onset epilepsy caused by loss of function mutations in the SCN1A gene, which encodes Nav1.1 channels that preferentially regulate activity of inhibitory neurons early in development. DS is associated with a high incidence of sudden unexpected death in epilepsy (SUDEP) by a mechanism that may involve respiratory failure.

View Article and Find Full Text PDF

The rate of sudden unexpected death in epilepsy (SUDEP) is ~1 per 1000 patients each year. Terminal events reportedly involve repeated and prolonged apnea, suggesting a failure to autoresuscitate. To better understand the mechanisms and identify novel therapeutics, standardized tests to screen for autoresuscitation efficacy are needed in preclinical SUDEP.

View Article and Find Full Text PDF

Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.

View Article and Find Full Text PDF

Background: Epilepsy, a significant neurological condition marked by the occurrence of repeated seizures, continues to pose a substantial health challenge. Previous studies have indicated that Dipeptidyl Peptidase-4 (DPP4) inhibitors may possess antiepileptic properties. Ferroptosis, a newly discovered type of programmed cell death, has recently surfaced as a promising therapeutic target in the management of epilepsy.

View Article and Find Full Text PDF

The leading cause of epilepsy-related mortality is sudden unexpected death in epilepsy (SUDEP), resulting from seizure-induced cardiorespiratory arrest by mechanisms that remain unresolved. Mutations in ion channel genes expressed in both brain and heart represent SUDEP risk factors because they can disrupt neural and cardiac rhythms, providing a unified explanation for seizures and lethal arrhythmias. However, the relative contributions of brain-driven mechanisms, heart-intrinsic processes, and seizures to cardiac dysfunction in epilepsy remain unclear.

View Article and Find Full Text PDF