TWEAK-Fn14 signaling protects mice from pulmonary fibrosis by inhibiting fibroblast activation and recruiting pro-regenerative macrophages.

Cell Rep

School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by excess accumulation of the extracellular matrix (ECM). The role of macrophage-fibroblast crosstalk in lung fibrogenesis is incompletely understood. Here we found that fibroblast growth factor-inducible molecule 14 (Fn14), the receptor for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is highly induced in myofibroblasts in the lungs of IPF patients and the bleomycin-induced lung fibrosis model. TWEAK-Fn14 signaling inhibits fibroblast activation and ECM synthesis and induces chemokine expression to recruit monocytes/macrophages into the lung. Fn14 deficiency increases ECM production and impairs macrophage infiltration and differentiation, leading to exacerbated lung fibrosis and impaired alveolar regeneration in a bleomycin model. Interestingly, Fn14 deficiency diminishes an injury-induced SiglecF CD11b MHCII intermediate macrophage (IntermM) subpopulation, which promotes alveolar type II (AT2) cell proliferation in organoid cultures. These results collectively demonstrate a protective role of TWEAK-Fn14 signaling in lung fibrosis, highlighting the complexities and multilayered regulation of macrophage-fibroblast crosstalk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.115220DOI Listing

Publication Analysis

Top Keywords

tweak-fn14 signaling
12
lung fibrosis
12
pulmonary fibrosis
8
fibroblast activation
8
macrophage-fibroblast crosstalk
8
fn14 deficiency
8
lung
6
fibrosis
5
signaling protects
4
protects mice
4

Similar Publications

Background: The progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH) and liver fibrosis remains poorly understood, though liver sinusoidal endothelial cells (LSECs) are thought to play a central role in disease pathogenesis.

Aim: To investigate the role of in NAFLD fibrosis through its regulation of LSEC dysfunction and macrophage polarization.

Methods: We analysed single-cell transcriptomic data (GSE129516) from NASH and normal mouse models and identified as a key regulator in LSECs.

View Article and Find Full Text PDF

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and function. Loss of PC1/PC2 disrupts calcium homeostasis, elevates cAMP, and activates proliferative cascades such as PKA-B-Raf-MEK-ERK, mTOR, and Wnt, driving cystogenesis via epithelial proliferation, impaired apoptosis, fluid secretion, and fibrosis.

View Article and Find Full Text PDF

Fibroblast‑like synoviocytes (FLSs) are the primary drivers of synovial tissue hyperplasia in rheumatoid arthritis (RA). Activation of the tumor necrosis factor‑like weak inducer of apoptosis (TWEAK)/fibroblast growth factor‑inducible immediate‑early response protein 14 (Fn14) pathway significantly contributes to the pathogenesis of RA. Kirenol (Kir), a compound with anti‑inflammatory and antirheumatic properties, has an unclear mechanism of action.

View Article and Find Full Text PDF

Cancer cachexia is a multifactorial syndrome characterized by progressive skeletal muscle wasting. The TWEAK-Fn14 system regulates muscle mass in diverse conditions. However, its role in the regulation of muscle mass during cancer cachexia remains less understood.

View Article and Find Full Text PDF

The objective of this study was to investigate the mechanism through which catalpol (CAT) exerts its protective effects in the context of myocardial ischemia-reperfusion injury. Preliminary results showed that Cat significantly attenuated oxygen-glucose deprivation/reoxygenation (OGD/R) damage to H9C2 cells, inhibited intracellular reactive oxygen species levels, and downregulated the protein expression of TWEAK and Fn14 post-OGD/R. The intracellular level of miR-126 was downregulated after OGD/R, and this effect was reversed by CAT administration.

View Article and Find Full Text PDF