Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM exposure-induced neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10937404.2025.2450354DOI Listing

Publication Analysis

Top Keywords

neurological disorders
12
particulate matter
8
humans animal
8
animal models
8
systematic review
8
cognitive dysfunction
8
human studies
8
matter associated
4
associated cognitive
4
cognitive impairment
4

Similar Publications

Background: In pediatric intensive care units, pain, sedation, delirium, and iatrogenic withdrawal syndrome (IWS) must be managed as interrelated conditions. Although clinical practice guidelines (CPGs) exist, new evidence needs to be incorporated, gaps in recommendations addressed, and recommendations adapted to the European context.

Objective: This protocol describes the development of the first patient- and family-informed European guideline for managing pain, sedation, delirium, and IWS by the European Society of Paediatric and Neonatal Intensive Care.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Importance: Trisomy 13 (T13) and trisomy 18 (T18) are chromosomal abnormalities with high mortality rates in the first year of life. Understanding differences in long-term survival between children with full vs mosaic or partial trisomy is crucial for prognosis and health care planning.

Objective: To examine the differences in 10-year survival between children with full T13 and T18 vs those with mosaic or partial trisomy.

View Article and Find Full Text PDF

IntroductionThe use of digital solutions including patient-reported outcomes is limited to follow-up of patients with established diagnoses but is rarely used as first step of the diagnostic process substituting a personal contact with a health professional. We report on the diagnostic validity and cost per patient implications based on a feasibility study of a new virtual diagnostic service (VDS) for common neurological sleep disorders that, as a first step, involves the collection and automated analysis of self-reported digital patient data.MethodsThe VDS was established at the Odense University Hospital, Denmark.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF