98%
921
2 minutes
20
This study investigated time-dependent changes in intracellular Ca⁺ levels in T cells, regulatory mechanisms, and functional effects after acute exercise. Male C57BL/6 mice were assigned to control and exercise groups, with the latter sacrificed at different intervals post-exercise. Murine splenic lymphocytes were isolated, and cytosolic Ca⁺ levels were measured using Fluo-3/AM. T-cell proliferation was assessed by flow cytometry and CFSE labeling, apoptosis by Annexin V/PI staining, and cytokine levels by CBA. RNA sequencing results were validated by qRT-PCR. The findings revealed that exercise significantly altered intracellular calcium oscillations in CD3 cells, leading to reduced mitogen-stimulated proliferation, increased IL-6, IL-5, and IL-13 production, and decreased IL-2 secretion. Additionally, there was an increase in the apoptotic fraction of CD3 cells, with upregulated expression of Cav1.1, Cav3.2, Cav3.3, SERCA2B, PKCθ, Bcl-xL, and FADD, and downregulated Ryr3 (p < 0.05). Transcriptomic analysis identified 607 differentially expressed genes involved in calcium ion binding and related pathways, including calcium signaling and cytokine-cytokine receptor interactions. Thus, acute exercise induces specific calcium oscillation patterns in T cells, mediated by PKCθ, affecting proliferation, apoptosis, and cytokine production. These changes are attributed to increased calcium influx through Cav1.1, Cav3.2, and Cav3.3 channels, decreased calcium reuptake via SERCA2B, and reduced calcium release through Ryr3. This research provides novel insights into how exercise modulates immune cell function by altering calcium levels, potential implications for enhancing immune responses or reducing inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2025.151321 | DOI Listing |
Handb Exp Pharmacol
September 2025
Department of Medicine, Duke University Medical Center, Durham, NC, USA.
GPCRs are known for their versatile signaling roles at the plasma membrane; however, recent studies have revealed that these receptors also function within various intracellular compartments, such as endosomes, the Golgi apparatus, and the endoplasmic reticulum. This spatially distinct signaling, termed location bias, allows GPCRs to initiate unique signaling cascades and influence cellular processes-including cAMP production, calcium mobilization, and protein phosphorylation-in a compartment-specific manner. By mapping the impact of GPCR signaling from these subcellular locations, this chapter emphasizes the mechanisms underlying signaling from intracellular receptor pools in diversifying receptor functionality.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
September 2025
Department of Biomedical Sciences (DSB), University of Padova, Padova 35131, Italy
The calcium ion (Ca) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca flux through specialized channels.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China. Electronic address:
The objective of this research was to use a network toxicology approach to examine the possible toxicity of the cigarette toxicants nicotine and coal tar that cause osteoporosis (OP) as well as its molecular processes. We determined the primary chemical structures and 128 targets of action of tar and nicotine using the Swiss Target Prediction, NP-MRD, and PubChem databases. We discovered that genes including DNAJB1, CCDC8, LINC00888, ATP6V1G1, MPV17L2, PPCS, and TACC1 had a disease prognostic guiding value by LASSO analysis and differential analysis of GEO microarray data.
View Article and Find Full Text PDFBioorg Chem
September 2025
Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133002, PR China; Department of Food Science and Technology, College of Agricultural, Yanbian Univ
In this study, bovine peptide‑calcium chelates (BBP-Ca) were prepared via enzymatic hydrolysis to generate peptides and fermentation to obtain soluble calcium ions, which were then chelated together. The structural characteristics of BBP-Ca were comprehensively analyzed using FTIR, SEM, and UV spectroscopy. Additionally, its antioxidant capacity was evaluated by examining its protective effects against oxidative stress-induced damage in Caco-2 cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
College of Life Science, Capital Normal University, 100048, Beijing, China. Electronic address:
CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are central components in plant signaling networks, orchestrating growth, development, and stress responses. However, their functions in thermomorphogenesis-an essential thermal-adaptation response-particularly their coordination with the core transcription factors PHYTOCHROME-INTERACTING FACTORs 4 and 7 (PIF4 and PIF7), remains elusive. Here we show that AtCPK4/5/6/11/12 physically interact with PIF4 and PIF7.
View Article and Find Full Text PDF