Data-driven equation-free dynamics applied to many-protein complexes: The microtubule tip relaxation.

Biophys J

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of guanosine-5'-triphosphate (GTP) to guanosine-5'-diphosphate (GDP) within the β-tubulin monomers. Understanding the dynamics and structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems. This study employs the "equation-free" multiscale computational method to accelerate the relaxation of all-atom simulations of MT tips toward their putative equilibrium conformation. Using large MT lattice systems (14 protofilaments × 8 heterodimers) comprising ∼21-38 million atoms, we applied this multiscale approach to leapfrog through time and nearly double the computational efficiency in realizing relaxed all-atom conformations of GDP- and GTP-complexed MT tips. Commencing from an initial 4 μs unbiased all-atom simulation, we interleave coarse-projective equation-free jumps with short bursts of all-atom molecular dynamics simulation to realize an additional effective simulation time of 1.875 μs. Our 5.875 μs of effective simulation trajectories for each system expose the subtle yet essential differences in the structures of MT tips as a function of whether β-tubulin monomer is complexed with GDP or GTP, as well as the lateral interactions within the MT tip, offering a refined understanding of features underlying MT dynamic instability. The approach presents a robust and generalizable framework for future explorations of large biomolecular systems at atomic resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2025.01.009DOI Listing

Publication Analysis

Top Keywords

dynamic instability
8
gdp- gtp-complexed
8
gtp-complexed tips
8
effective simulation
8
all-atom
5
data-driven equation-free
4
equation-free dynamics
4
dynamics applied
4
applied many-protein
4
many-protein complexes
4

Similar Publications

Wearable bioelectronics have advanced dramatically over the past decade, yet remain constrained by their superficial placement on the skin, which renders them vulnerable to environmental fluctuations and mechanical instability. Existing microneedle (MN) electrodes offer minimally invasive access to dermal tissue, but their rigid, bulky design-often 100 times larger and 10,000 times stiffer than dermal fibroblasts-induces pain, tissue damage, and chronic inflammation, limiting their long-term applicability. Here, a cell-stress-free percutaneous bioelectrode is presented, comprising an ultrathin (<2 µm), soft MN (sMN) that dynamically softens via an effervescent structural transformation after insertion.

View Article and Find Full Text PDF

Extrachromosomal DNA-Driven Oncogene Spatial Heterogeneity and Evolution in Glioblastoma.

Cancer Discov

September 2025

Evolutionary Dynamics Group, Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.

Unlabelled: Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA.

View Article and Find Full Text PDF

Strain-induced instabilities of graphene under biaxial stress.

J Chem Phys

September 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.

View Article and Find Full Text PDF

Oxophilic Sites Mediated Dynamic Oxygen Replenishment to Stabilize Lattice Oxygen Catalysis in Acidic Water Oxidation.

J Am Chem Soc

September 2025

Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.

Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.

View Article and Find Full Text PDF

The anterior cruciate ligament (ACL) of the knee is commonly injured and can lead to joint instability. ACL reconstruction (ACLR) is often required as endogenous healing is limited and the stability provided by dynamic stabilisers is insufficient for complete joint function. A graft, comprising either biological tissue or synthetic material, is used to replicate the biomechanical and structural properties of the native ACL to restore function.

View Article and Find Full Text PDF