Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models. The aim of this study was to compare the prognostic value of manually versus automatically assessed volumetric measurements in glioblastoma patients.

Methods: Adult patients who underwent resection of histopathologically confirmed glioblastoma were included from 12 different hospitals in Europe and North America. Patient characteristics and survival data were collected as part of local tumor registries or were retrieved from patient medical records. The prognostic value of manually and automatically assessed EOR and RT volume was compared using Cox regression models.

Results: Both manually and automatically assessed RT volumes were a negative prognostic factor for overall survival (manual vs automatic: HR 1.051, 95% CI 1.034-1.067 [p < 0.001] vs HR 1.019, 95% CI 1.007-1.030 [p = 0.001]). Both manual and automatic EOR models showed that patients with gross-total resection have significantly longer overall survival compared with those with subtotal resection (manual vs automatic: HR 1.580, 95% CI 1.291-1.932 [p < 0.001] vs HR 1.395, 95% CI 1.160-1.679 [p < 0.001]), but no significant prognostic difference of gross-total compared with near-total (90%-99%) resection was found. According to the Akaike information criterion and the Bayesian information criterion, all multivariable Cox regression models showed similar goodness-of-fit.

Conclusions: Automatically and manually measured EOR and RT volumes have comparable prognostic properties. Automatic segmentation with Raidionics can be used in future studies in patients with glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2024.8.JNS24415DOI Listing

Publication Analysis

Top Keywords

automatically assessed
12
manual automatic
12
residual tumor
8
tumor volume
8
automatic segmentation
8
prognostic manually
8
manually automatically
8
cox regression
8
prognostic
7
automatic
6

Similar Publications

The aim of the study was to validate a new method for semiautomatic subtraction of [Tc]Tc-sestamibi and [Tc]NaTcO SPECT 3-dimensional datasets using principal component analysis (PCA) against the results of parathyroid surgery and to compare its performance with an interactive method for visual comparison of images. We also sought to identify factors that affect the accuracy of lesion detection using the two methods. Scintigraphic data from [Tc]Tc-sestamibi and [Tc]NaTcO SPECT were analyzed using semiautomatic subtraction of the 2 registered datasets based on PCA applied to the region of interest including the thyroid and an interactive method for visual comparison of the 2 image datasets.

View Article and Find Full Text PDF

The helical morphology of Type B aortic dissections (TBAD) represents a potentially important geometric biomarker that may influence dissection progression. While three-dimensional surface-based quantification methods provide accurate TBAD helicity assessment, their clinical adoption remains limited by significant processing time. We developed and validated a clinically practical centerline-based helicity quantification method using routine imaging software (TeraRecon) against an extensively validated surface-based method (SimVascular).

View Article and Find Full Text PDF

To combine the strengths of Gaussian and non-Gaussian latent variable models, a novel information fusion strategy has recently been proposed under the deep learning framework. Although promising results have been obtained, the critical structure learning problem remains unsolved, which seriously hinders the automation of data-driven modeling and analytics. In this article, the maximal information coefficient (MIC) method is introduced as a measurement of the AS between two latent variables, which has no restriction in the type of data distribution.

View Article and Find Full Text PDF

Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.

View Article and Find Full Text PDF

AI Model Based on Diaphragm Ultrasound to Improve the Predictive Performance of Invasive Mechanical Ventilation Weaning: Prospective Cohort Study.

JMIR Form Res

September 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.

Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.

View Article and Find Full Text PDF