Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The presence of trace CO impurity gas in hydrogen fuel can rapidly deactivate platinum-based hydrogen oxidation reaction (HOR) catalysts due to poisoning effects, yet the precise CO tolerance mechanism remains debated. Our designed Au@PtX bifunctional core-shell nanocatalysts exhibit excellent performance of CO tolerance in acidic solution during HOR and possess exceptional Raman spectroscopy enhancement. Through capturing and analyzing in situ Raman spectroscopy evidences on *OH, metal-O species and *CO evolution under 0.3 V, we confirm that oxygen-containing species on PtRu and PtSn catalysts promote the oxidation and desorption of *CO. While Ru enhances *CO adsorption on Pt, the primary CO tolerance performance of PtRu arises from *CO oxidation via a bifunctional pathway. Additionally, electronic structure of Sn reduces *CO adsorption on Pt sites, complementing the bifunctional mechanism to further enhance the CO tolerance performance of PtSn. These discoveries significantly deepen our understanding of the anti-poisoning mechanism of Pt-based catalysts in the HOR process and offer valuable insights for rational catalyst design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202423301 | DOI Listing |