Solar-based technologies for removing potentially toxic metals from water sources: a review.

Environ Sci Pollut Res Int

Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals. The performance and productivity of these methods in removing heavy metals such as arsenic (As), chromium (Cr), mercury (Hg), and uranium (U) from water still need to be comprehensively synthesized. Thus, this work aims to address that gap. The performance, potential, and challenges of real-world applications of conventional solar stills (CSS), membrane-based solar stills, and solar heterogeneous photocatalysis are concisely summarized and critically reviewed. CSS and membrane-based stills are highly effective (efficacy > 98%) in removing and capturing heavy metals from water. However, structural and functional improvements are needed to enhance productivity (especially for CSS) and usability in real-world environmental remediation and drinking water supply scenarios. Solar heterogeneous photocatalysis is highly effective in removing and/or converting As, Cr, Hg, and U into their non-toxic or less toxic forms, which subsequent processes can easily remove. Further research is necessary to evaluate the safety of photocatalytic materials, their integration into scalable solar reactors, and their usability in real-world environmental remediation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-025-35897-4DOI Listing

Publication Analysis

Top Keywords

heavy metals
16
metals water
12
toxic metals
8
water sources
8
solar stills
8
css membrane-based
8
solar heterogeneous
8
heterogeneous photocatalysis
8
highly effective
8
usability real-world
8

Similar Publications

Construction of an Ag-functionalized structural color hydrogel sensor for colorimetric detection of glutathione.

Mikrochim Acta

September 2025

Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.

An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Spirulina subsalsa powder produced from seawater-wastewater: a nutrient-rich and safe alternative for aquaculture feed.

Bioresour Technol

September 2025

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute o

Elevated expense of chemical media spurs a shift to non-chemical media in microalgal cultivation, while ensuring the safety of the resulting powder poses a challenge. No previous studies have evaluated the safety and application of Spirulina subsalsa powder cultivated in monosodium glutamate wastewater (MSGW) and seawater. In this study, an analysis of basic nutritional components in Spirulina subsalsa powder indicated that this algal powder had high protein content, low lipid content and rich mineral content.

View Article and Find Full Text PDF

Novel Thermal Modification of Phosphate Tailings for Enhanced Heavy Metals Immobilization in Soil.

Environ Res

September 2025

State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.

View Article and Find Full Text PDF