Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Lung cancer screening (LCS) has the potential to reduce mortality and detect lung cancer at its early stages, but the high false-positive rate associated with low-dose computed tomography (LDCT) for LCS acts as a barrier to its widespread adoption. This study aims to develop computable phenotype (CP) algorithms on the basis of electronic health records (EHRs) to identify individual's eligibility for LCS, thereby enhancing LCS utilization in real-world settings.

Materials And Methods: The study cohort included 5,778 individuals who underwent LDCT for LCS from 2012 to 2022, as recorded in the University of Florida Health Integrated Data Repository. CP rules derived from LCS guidelines were used to identify potential candidates, incorporating both structured EHR and clinical notes analyzed via natural language processing. We then conducted manual reviews of 453 randomly selected charts to refine and validate these rules, assessing CP performance using metrics, for example, F1 score, specificity, and sensitivity.

Results: We developed an optimal CP rule that integrates both structured and unstructured data, adhering to the US Preventive Services Task Force 2013 and 2020 guidelines. This rule focuses on age (55-80 years for 2013 and 50-80 years for 2020), smoking status (current, former, and others), and pack-years (≥30 for 2013 and ≥20 for 2020), achieving F1 scores of 0.75 and 0.84 for the respective guidelines. Including unstructured data improved the F1 score performance by up to 9.2% for 2013 and 12.9% for 2020, compared with using structured data alone.

Conclusion: Our findings underscore the critical need for improved documentation of smoking information in EHRs, demonstrate the value of artificial intelligence techniques in enhancing CP performance, and confirm the effectiveness of EHR-based CP in identifying LCS-eligible individuals. This supports its potential to aid clinical decision making and optimize patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748906PMC
http://dx.doi.org/10.1200/CCI.24.00139DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
computable phenotype
8
cancer screening
8
electronic health
8
health records
8
ldct lcs
8
unstructured data
8
lcs
6
phenotype determining
4
determining eligibility
4

Similar Publications

Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.

Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.

Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.

View Article and Find Full Text PDF

Purpose: Frailty measures are critical for predicting outcomes in metastatic spine disease (MSD) patients. This study aimed to evaluate frailty measures throughout the disease process.

Methods: This retrospective analysis measured frailty in MSD patients at multiple time points using a modified Metastatic Spinal Tumor Frailty Index (MSTFI).

View Article and Find Full Text PDF

Saturation of respiratory strain during robotic hysterectomy in obese women with endometrial cancer.

J Robot Surg

September 2025

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UT Health San Antonio, 7703 Floyd Curl Drive, 7836, San Antonio, TX, 78229-3900, USA.

To evaluate intraoperative ventilatory mechanics during robotic-assisted hysterectomy in obese women with endometrial cancer and introduce the concept of a physiologic "ceiling effect" in respiratory strain. We conducted a retrospective cohort study of 89 women with biopsy-confirmed endometrial cancer who underwent robotic-assisted total hysterectomy between 2011 and 2015. Intraoperative ventilatory parameters, including plateau airway pressure and static lung compliance, were recorded at five-minute intervals.

View Article and Find Full Text PDF

Purpose: The German sector-based healthcare system poses a major challenge to continuous patient monitoring and long-term follow-up, both essential for generating high-quality, longitudinal real-world data. The national Network for Genomic Medicine (nNGM) bridges the inpatient and outpatient care sectors to provide comprehensive molecular diagnostics and personalized treatment for non-small cell lung cancer (NSCLC) patients in Germany. Building on the established nNGM infrastructure, the DigiNet study aims to evaluate the impact of digitally integrated, personalized care on overall survival (OS) and the optimization of treatment pathways, compared to routine care.

View Article and Find Full Text PDF