A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis. | LitMetric

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address: zhuqinuaa@16

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis. To address these problems, we propose a multi-channel spatio-temporal graph attention contrastive network for DBNs analysis. Specifically, we first construct dynamic brain functional networks from fMRI data with sliding windows, and embed the structural connectivity derived from diffusion tensor imaging (DTI) to the dynamic functional connectivity graph representation to construct multi-modal brain network. Second, we develop a multi-channel spatial attention contrastive network to extract topological features from the brain network within each time window. This network incorporates an intra-window graph contrastive constraint to enhance the discriminative ability of the extracted features. Moreover, temporal dependencies across windows are captured by integrating feature embeddings through a self-attention mechanism, and the inter-window recurrent contrastive constraint is devised to extract higher-order spatio-temporal topological features. Finally, a multi-layer perceptron (MLP) is used to classify the brain networks. Experiments on epilepsy and ADNI datasets show that our method outperforms several state-of-the-art approaches in diagnosing performance, and it provides discriminative graph features for related brain diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2025.121013DOI Listing

Publication Analysis

Top Keywords

attention contrastive
12
contrastive network
12
brain network
12
brain
9
multi-channel spatio-temporal
8
spatio-temporal graph
8
graph attention
8
dynamic brain
8
brain networks
8
sliding windows
8

Similar Publications