98%
921
2 minutes
20
Quantity and source of dietary protein intakes impact the gut microbiota differently. However, these effects have not been systematically studied. This review aimed to investigate these effects whilst controlling for fiber intake. Seven databases were searched, with 50 and 15 randomized controlled trials selected for the systematic review and network meta-analysis respectively. Most gut microbiota-related outcomes showed no significant differences between different protein and fiber intake combinations. Compared to Normal Protein, High Fiber intakes, High Protein, Low Fiber (HPLF) intakes showed greater fecal valerate (SMD = 0.79, 95% CrI: 0.35, 1.24) and plasma trimethylamine -oxide (TMAO) (SMD = 2.90, 95% CrI: 0.16, 5.65) levels. HPLF intakes also showed greater fecal propionate (SMD = 0.49, 95% CrI: 0.02, 1.07) and valerate (SMD = 0.79, 95% CrI: 0.31, 1.28) levels compared to High Protein, High Fiber intakes. Greater plasma TMAO levels were observed with greater animal protein intakes. Overall, protein quantity and source do not generally alter the gut microbiota composition, although protein quantity can influence microbiota function via modulations in proteolytic fermentation. Both protein and fiber intake should be considered when assessing the impact of dietary protein on the gut microbiota. This trial was registered at PROSPERO (CRD42023391270).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2025.2452362 | DOI Listing |
Nutr Clin Pract
September 2025
School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland.
Background: Esophagectomy causes anatomical changes that can lead to rapid food transit and reactive hypoglycemia (RH). Patients are advised on eating patterns postesophagectomy to prevent RH, but its true incidence and the impact of dietary recommendations remain under-researched.
Materials And Methods: Individuals >12 months postesophagectomy were recruited from the National Centre for Oesophageal and Gastric Cancer at St James's Hospital in Dublin, Ireland.
Calcif Tissue Int
September 2025
Department of Physical Education, Center for Health and Sports Sciences, Santa Catarina State University, Rua Pascoal Simone, 358, Coqueiros, Florianópolis, State of Santa Catarina, CEP: 88080-350, Brazil.
This study investigated the association between energy and macronutrient intake and bone health in 63 adolescents of both sexes who participated in volleyball, track and field, or swimming. Bone mineral content (BMC) and density (BMD) of the total body less head (TBLH), lumbar spine (L1-L4), and femoral neck were assessed using DXA. Bone geometry parameters, including cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), and section modulus, were estimated.
View Article and Find Full Text PDFChronobiol Int
September 2025
Faculty of Medicine & Health, School of Health Sciences, The University of Sydney, Sydney, Australia.
This study examines how dietary nutrient patterns vary among individuals with different chronotypes. In other words, this research explores the potential connections between nutrient intake and circadian rhythm. In this secondary data analysis, we used data from 3,072 adult participants (mean age: 30.
View Article and Find Full Text PDFClin Nutr
August 2025
Department of Sustainable Development and Ecological Transition, Università del Piemonte Orientale, 13100 Vercelli, Italy; Simple Departmental Structure Research Laboratories - Integrated Activities Research and Innovation Department, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessa
Background & Aims: Among diet, microbiota, and obesity exists a close correlation that remains insufficiently explored, particularly within the pediatric age. We aimed to deeply investigate the relationship between dietary composition and microbiota in pediatric subjects with obesity before an educational training in a Mediterranean-style diet.
Methods: 55 subjects (10-18 years) with overweight or obesity and visceral adiposity, diet naïve, or failure to a previous weight loss program were phenotypically described through clinical and metabolic parameters, including circulating LPS levels.
Cancer Causes Control
September 2025
Huntsman Cancer Institute, Salt Lake City, UT, USA.
Background: Cachexia accounts for about 20% of all cancer-related deaths and it is indicative of poor prognosis and progressive functional impairment. The role of the gut microbiome in the development of cachexia in colorectal cancer (CRC) patients has not been established.
Methods: Pre-surgical stool samples from n = 103 stage I-III CRC patients in the ColoCare Study were analyzed using 16S rRNA gene sequencing (Illumina) to characterize fecal bacteria.