Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks. We verify our modelled atmospheric emissions by comparing them with top-down point-in-time emission-rate estimates and cumulative emission estimates derived from airborne, satellite and tall tower data. We obtain consistency between our modelled atmospheric emissions and top-down estimates and find that 465 ± 20 thousand metric tons of methane were emitted to the atmosphere. Although, to our knowledge, this represents the largest recorded amount of methane released from a single transient event, it is equivalent to 0.1% of anthropogenic methane emissions for 2022. The impact of the leaks on the global atmospheric methane budget brings into focus the numerous other anthropogenic methane sources that require mitigation globally. Our analysis demonstrates that diverse, complementary measurement approaches are needed to quantify methane emissions in support of the Global Methane Pledge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779632 | PMC |
http://dx.doi.org/10.1038/s41586-024-08396-8 | DOI Listing |