Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons. The absence of SOX4 and SOX11 in post-mitotic excitatory neurons results in a marked reduction in the size of the basolateral amygdala complex (BLC), claustrum (CLA) and PIR. These transcription factors control BLC formation through direct regulation of Tfap2d expression. Cross-species analyses, including in humans, identified conserved Tfap2d expression in developing excitatory neurons of BLC, CLA, PIR and the associated transitional areas of the frontal, insular and temporal cortex. Although the loss and haploinsufficiency of Tfap2d yield similar alterations in learned threat-response behaviours, differences emerge in the phenotypes at different Tfap2d dosages, particularly in terms of changes observed in BLC size and BLC-PFC connectivity. This underscores the importance of Tfap2d dosage in orchestrating developmental shifts in BLC-PFC connectivity and behavioural modifications that resemble symptoms of neuropsychiatric disorders. Together, these findings reveal key elements of a conserved gene regulatory network that shapes the development and function of crucial VLp excitatory neurons and their PFC connectivity and offer insights into their evolution and alterations in neuropsychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821539PMC
http://dx.doi.org/10.1038/s41586-024-08361-5DOI Listing

Publication Analysis

Top Keywords

excitatory neurons
20
neuropsychiatric disorders
12
vlp excitatory
8
transcription factors
8
sox4 sox11
8
pfc connectivity
8
cla pir
8
tfap2d expression
8
blc-pfc connectivity
8
neurons
6

Similar Publications

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

GluN2A-NMDA receptor inhibition disinhibits the prefrontal cortex, reduces forced swim immobility, and impairs sensorimotor gating.

Acta Pharmacol Sin

September 2025

Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Bas

Recent investigations into the rapid antidepressant effects of ketamine, along with studies on schizophrenia-related susceptibility genes, have highlighted the GluN2A subunit as a critical regulator of both emotion and cognition. However, the specific impacts of acute pharmacological inhibition of GluN2A-containing NMDA receptors on brain microcircuits and the subsequent behavioral consequences remain poorly understood. In this study, we first examined the effects of MPX-004, a selective GluN2A NMDA receptor inhibitor, on behavior within the dorsomedial prefrontal cortex (dmPFC).

View Article and Find Full Text PDF

The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.

View Article and Find Full Text PDF

Migraine is a complex neurological disorder influenced by multiple genetic susceptibility factors, yet current animal models fail to fully recapitulate its human-specific pathophysiology. In this study, we explored the potential mechanisms underlying migraine by examining functional abnormalities and molecular dysregulation in glutamatergic neurons derived from induced pluripotent stem cells (iPSCs) of migraine patients. As key excitatory cells in the central nervous system, glutamatergic neurons are implicated in migraine through altered excitability, ion channel dysfunction, and dysregulation of nociceptive signaling molecules.

View Article and Find Full Text PDF

Excitatory cortical neurons from CDKL5 deficiency disorder patient-derived organoids show early hyperexcitability not identified in neurogenin2 induced neurons.

Neurobiol Dis

September 2025

F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.

CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation.

View Article and Find Full Text PDF