Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR. DOX-M@CaP@ATV@HA could accurately target tumor cells due to the active targetability of hyaluronic acid (HA) toward CD44 receptors. The calcium phosphate (CaP) shell was cleaved in the lysosomal acidic environment so that the cholesterol-lowering drug atorvastatin (ATV) was rapidly released to diminish cholesterol and P-glycoprotein (P-gp) level on the membrane, thereby boosting tumor cell drug uptake. Next, doxorubicin (DOX) was gradually released from the hydrophobic core of the mPEG-DSPE micelle, inflicting irreversible DNA damage and triggering apoptosis. The nanosystem was proven both and to reverse MDR effectively and exhibited a remarkable therapeutic efficacy on drug-resistant tumors with high biosafety. In conclusion, DOX-M@CaP@ATV@HA effectively reverses MDR via cholesterol depletion, which provides an innovative strategy for tumor MDR treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c17858DOI Listing

Publication Analysis

Top Keywords

drug release
12
sequential drug
8
depleting cholesterol
8
cholesterol reverse
8
reverse tumor
8
multidrug resistance
8
tumor mdr
8
tumor
6
mdr
6
drug
5

Similar Publications

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Modern anesthesia, intensive care, and emergency medicine rely heavily on neuromuscular blocking agents (NMBAs), first introduced in 1942. These agents not only facilitate endotracheal intubation but also improve surgical conditions by suppressing muscle responses to stimuli. NMBAs function via depolarizing (eg, succinylcholine) or non-depolarizing mechanisms.

View Article and Find Full Text PDF

This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.

View Article and Find Full Text PDF

Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.

View Article and Find Full Text PDF