Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The dysregulation of T cell differentiation was associated with cognitive impairment. Recently, the peripheric β-secretase (BACE1) has been suggested as a regulator of T cell differentiation, which was increased in both cognitive impairment (CI) and type 2 diabetes mellitus (T2DM) in CI patients. However, the relationship between T cell dysfunction and CI remains unclear. To address this question, we measured T cell subtypes and BACE1 enzyme activity in a clinical cohort and 5xFAD mice. We found that both IFNγ+ Th1 and Tc1 cells were increased in the CI and T2DM-CI groups, which were associated with worsening cognitive function. The elevated IFNγ + Th1 and Tc1 cells were also observed in 8-month-old 5xFAD mice. The elevated BACE1-mediated INSR cleavage was associated with increased IFNγ + Th1 and Tc1 cells. These findings demonstrate the potential role of elevated BACE1 in IFNγ+ T cells and CI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804866 | PMC |
http://dx.doi.org/10.1021/acschemneuro.4c00565 | DOI Listing |