Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Predicting the outcome of antiretroviral therapies (ART) for HIV-1 is a pressing clinical challenge, especially when the ART includes drugs with limited effectiveness data. This scarcity of data can arise either due to the introduction of a new drug to the market or due to limited use in clinical settings, resulting in clinical dataset with highly unbalanced therapy representation. To tackle this issue, we introduce a novel joint fusion model, which combines features from a Fully Connected (FC) Neural Network and a Graph Neural Network (GNN) in a multi-modality fashion. Our model uses both tabular data about genetic sequences and a knowledge base derived from Stanford drug-resistance mutation tables, which serve as benchmark references for deducing in-vivo treatment efficacy based on the viral genetic sequence. By leveraging this knowledge base structured as a graph, the GNN component enables our model to adapt to imbalanced data distributions and account for Out-of-Distribution (OoD) drugs. We evaluated these models' robustness against OoD drugs in the test set. Our comprehensive analysis demonstrates that the proposed model consistently outperforms the FC model. These results underscore the advantage of integrating Stanford scores in the model, thereby enhancing its generalizability and robustness, but also extending its utility in contributing in more informed clinical decisions with limited data availability. The source code is available at https://github.com/federicosiciliano/graph-ood-hiv.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2024.102484DOI Listing

Publication Analysis

Top Keywords

graph neural
8
neural network
8
knowledge base
8
ood drugs
8
model
7
data
5
neural network-based
4
network-based model
4
model out-of-distribution
4
out-of-distribution robustness
4

Similar Publications

Phenotype-driven approaches identify disease-counteracting compounds by analysing the phenotypic signatures that distinguish diseased from healthy states. Here we introduce PDGrapher, a causally inspired graph neural network model that predicts combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem and predicts the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), one of the most common sleep disorders globally, is closely linked to brain function. Resting-state electroencephalography (EEG), due to its convenience, cost-effectiveness, and high temporal resolution, serves as a valuable tool for exploring the human brain function. This study utilized a large cohort with 968 participants who joined in 15-minute daytime resting-state EEG acquisition and overnight polysomnography (PSG) monitoring.

View Article and Find Full Text PDF

Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.

Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF

Directed message passing neural networks enhanced graph convolutional learning for accurate polymer density prediction.

J Chem Phys

September 2025

National Synchrotron Radiation Laboratory, State Key Laboratory of Advanced Glass Materials, Anhui Provincial Engineering Research Center for Advanced Functional Polymer Films, University of Science and Technology of China, Hefei, Anhui 230029, China.

Polymer density is a critical factor influencing material performance and industrial applications, and it can be tailored by modifying the chemical structure of repeating units. Traditional polymer density characterization methods rely heavily on domain expertise; however, the vast chemical space comprising over one million potential polymer structures makes conventional experimental screening inefficient and costly. In this study, we proposed a machine learning framework for polymer density prediction, rigorously evaluating four models: neural networks (NNs), random forest (RF), XGBoost, and graph convolutional neural networks (GCNNs).

View Article and Find Full Text PDF